37 research outputs found

    Theoretical study of NMR relaxation due to rattling phonons

    Full text link
    We calculate the NMR relaxation rate due to quadrupolar coupling of the nucleus to a local, strongly anharmonic phonon mode. As a model potential for a rattling motion we consider a square-well potential. We calculate the free phonon Green's function analytically and derive the low and high temperature limits of the NMR relaxation rate. It is shown that the temperature dependence of the NMR relaxation rate possesses a peak in contrast to harmonic phonons but in qualitative agreement with a recent NMR study on KOs2O6. We discuss the influence of phonon renormalization due to electron-phonon interaction.Comment: 5 pages, 3 figures, SNS2007 (Sendai, Japan) conference proceedings, accepted for publicatio

    Comoving Space Density and Obscured Fraction of High-Redshift Active Galactic Nuclei in the Subaru/{\it XMM-Newton} Deep Survey

    Get PDF
    We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts (3<z<53 < z < 5) in the Subaru/{\it XMM-Newton} Deep Survey (SXDS) field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at z>3z > 3 with intrinsic (de-absorbed and rest-frame 2--10 keV) luminosities of LX=104445L_{\rm X} = 10^{44-45} erg s1^{-1} detected in the 0.5--2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the 1/Vmax1/V_{\rm max} method, we confirm that the comoving space density of luminous AGNs decreases with redshift above z>3z > 3. When combined with the {\it Chandra}-COSMOS result of Civano et al.\ (2011), the density decline of AGNs with LX=104445L_{\rm X} = 10^{44-45} erg s1^{-1} is well represented by a power law of (1+z)6.2±0.9(1 + z)^{-6.2 \pm 0.9}. We also determine the fraction of X-ray obscured AGNs with NH>1022N_{\rm H} > 10^{22} cm2^{-2} in the Compton-thin population to be 0.540.19+0.17^{+0.17}_{-0.19}, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59±\pm0.09. Comparing our result with that obtained in the local Universe, we conclude that the obscured fraction of luminous AGNs increases significantly from z=0z=0 to z>3z>3 by a factor of 2.5±\pm1.1.Comment: 12 pages, 12 figures, 1 table. Accepted for publication in Ap

    Metal-Insulator Transition Accompanied with a Charge Ordering in the One-dimensional t-J' Model

    Full text link
    We study the metal-insulator transition accompanied with a charge ordering in the one-dimensional (1D) t-J' model at quarter filling by the density matrix renormalization group method. In this model the nearest-neighbor hopping energy t competes with the next-nearest-neighbor exchange energy J'. We have found that a metal-insulator transition occurs at a finite value of t/J'; (t/J')_C = 0.18 and the transition is of first order. In the insulating phase for small t/J', there is an alternating charge ordering and the system behaves as a 1D quantum Heisenberg antiferromagnet. The metallic side belongs to the universality class of the Tomonaga-Luttinger liquids. The quantum phase transition is an example of melting of the 1D quantum Heisenberg antiferromagnet.Comment: 4 pages, 6 Postscript figures, REVTeX, submitted to Phys. Rev.

    A Spectral Study of the Black Hole Candidate XTE J1752-223 in the High/Soft State with MAXI, Suzaku and Swift

    Full text link
    We report on the X-ray spectral analysis of the black hole candidate XTE\ J1752--223 in the 2009--2010 outburst, utilizing data obtained with the MAXI/Gas Slit Camera (GSC), the Swift/XRT, and Suzaku, which work complementarily. As already reported by Nakahira et al. (2010) MAXI monitored the source continuously throughout the entire outburst for about eight months. All the MAXI/GSC energy spectra in the high/soft state lasting for 2 months are well represented by a multi-color disk plus power-law model. The innermost disk temperature changed from \sim0.7 keV to \sim0.4 keV and the disk flux decreased by an order of magnitude. Nevertheless, the innermost radius is constant at \sim41 D3.5(cosi)1/2D_{3.5}(\cos{\it i})^{-1/2} km, where D3.5D_{3.5} is the source distance in units of 3.5 kpc and ii the inclination. The multi-color disk parameters obtained with the MAXI/GSC are consistent with those with the Swift/XRT and Suzaku. The Suzaku data also suggests a possibility that the disk emission is slightly Comptonized, which could account for broad iron-K features reported previously. Assuming that the obtained innermost radius represents the innermost stable circular orbit for a non-rotating black hole, we estimate the mass of the black hole to be 5.51±\pm0.28 MM_{\odot} D3.5(cosi)1/2D_{3.5}(\cos{\it i})^{-1/2}, where the correction for the stress-free inner boundary condition and color hardening factor of 1.7 are taken into account. If the inclination is less than 49^{\circ} as suggested from the radio monitoring of transient jets and the soft-to-hard transition in 2010 April occurred at 1--4% of Eddignton luminosity, the fitting of the Suzaku spectra with a relativistic accretion-disk model derives constraints on the mass and the distance to be 3.1--55 MM_{\odot} and 2.3--22 {\rm kpc}, respectively. This confirms that the compact object in XTE J1752--223 is a black hole.Comment: 12 pages including 7 figures and 4 tables, accepted for publication in PAS

    Outburst of LS V+44 17 Observed by MAXI and RXTE, and Discovery of a Dip Structure in the Pulse Profile

    Full text link
    We report on the first observation of an X-ray outburst of a Be/X-ray binary pulsar LS V +44 17/RX J0440.9+4431, and the discovery of an absorption dip structure in the pulse profile. An outburst of this source was discovered by MAXI GSC in 2010 April. It was the first detection of the transient activity of LS V +44 17 since the source was identified as a Be/X-ray binary in 1997. From the data of the follow-up RXTE observation near the peak of the outburst, we found a narrow dip structure in its pulse profile which was clearer in the lower energy bands. The pulse-phase-averaged energy spectra in the 3-100 keV band can be fitted with a continuum model containing a power-law function with an exponential cutoff and a blackbody component, which are modified at low energy by an absorption component. A weak iron Kα\alpha emission line is also detected in the spectra. From the pulse-phase-resolved spectroscopy we found that the absorption column density at the dip phase was much higher than those in the other phases. The dip was not seen in the subsequent RXTE observations at lower flux levels. These results suggest that the dip in the pulse profile originates from the eclipse of the radiation from the neutron star by the accretion column.Comment: 18 pages, 7 figures, accepted for publication in PAS

    MAXI GSC observations of a spectral state transition in the black hole candidate XTE J1752-223

    Full text link
    We present the first results on the black hole candidate XTE J1752-223 from the Gas Slit Camera (GSC) on-board the Monitor of All-sky X-ray Image (MAXI) on the International Space Station. Including the onset of the outburst reported by the Proportional Counter Array on-board the Rossi X-ray Timing Explorer on 2009 October 23, the MAXI/GSC has been monitoring this source approximately 10 times per day with a high sensitivity in the 2-20 keV band. XTE J1752-223 was initially in the low/hard state during the first 3 months. An anti-correlated behavior between the 2-4 keV and 4-20 keV bands were observed around January 20, 2010, indicating that the source exhibited the spectral transition to the high/soft state. A transient radio jet may have been ejected when the source was in the intermediate state where the spectrum was roughly explained by a power-law with a photon index of 2.5-3.0. The unusually long period in the initial low/hard state implies a slow variation in the mass accretion rate, and the dramatic soft X-ray increase may be explained by a sudden appearance of the accretion disk component with a relatively low innermost temperature (0.4-0.7 keV). Such a low temperature might suggest that the maximum accretion rate was just above the critical gas evaporation rate required for the state transition.Comment: Publication of Astronomical Society of Japan Vol.62, No.5 (2010) [in print

    The MAXI Mission on the ISS: Science and Instruments for Monitoring All Sky X-Ray Images

    Full text link
    The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS. It is scheduled for launch in the middle of 2009 to monitor all-sky X-ray objects on every ISS orbit. MAXI will be more powerful than any previous X-ray All Sky Monitor (ASM) payloads, being able to monitor hundreds of AGN. MAXI will provide all sky images of X-ray sources of about 20 mCrab in the energy band of 2-30 keV from observation on one ISS orbit (90 min), about 4.5 mCrab for one day, and about 1 mCrab for one month. A final detectability of MAXI could be 0.2 mCrab for 2 year observations.Comment: 12 pages, 11 figures, accepted for publication in Publications of the Astronomical Society of Japa

    Long-term Monitoring of the Black Hole Binary GX 339-4 in the High/Soft State during the 2010 Outburst with MAXI/GSC

    Full text link
    We present the results of monitoring the Galactic black hole candidate GX 339-4 with the Monitor of All-sky X-ray Image (MAXI) / Gas Slit Camera (GSC) in the high/soft state during the outburst in 2010. All the spectra throughout the 8-month period are well reproduced with a model consisting of multi-color disk (MCD) emission and its Comptonization component, whose fraction is <= 25% in the total flux. In spite of the flux variability over a factor of 3, the innermost disk radius is constant at R_in = 61 +/- 2 km for the inclination angle of i = 46 deg and the distance of d=8 kpc. This R_in value is consistent with those of the past measurements with Tenma in the high/soft state. Assuming that the disk extends to the innermost stable circular orbit of a non-spinning black hole, we estimate the black hole mass to be M = 6.8 +/- 0.2 M_sun for i = 46 deg and d = 8 kpc, which is consistent with that estimated from the Suzaku observation of the previous low/hard state. Further combined with the mass function, we obtain the mass constraint of 4.3 M_sun < M < 13.3 M_sun for the allowed range of d = 6-15 kpc and i < 60 deg. We also discuss the spin parameter of the black hole in GX 339-4 by applying relativistic accretion disk models to the Swift/XRT data.Comment: 9 pages, 8 figures, accepted for publication in PASJ (Suzaku+MAXI special issue

    Bright X-ray flares from the BL Lac object Mrk 421, detected with MAXI in 2010 January and February

    Full text link
    Strong X-ray flares from the blazar Mrk 421 were detected in 2010 January and February through the 7 month monitoring with the MAXI GSC. The maximum 2 -- 10 keV flux in the January and February flares was measured as 120 +- 10 mCrab and 164 +- 17 mCrab respectively; the latter is the highest among those reported from the object. A comparison of the MAXI and Swift BAT data suggests a convex X-ray spectrum with an approximated photon index of about 2. This spectrum is consistent with a picture that MAXI is observing near the synchrotron peak frequency. The source exhibited a spectral variation during these flares, slightly different from those in the previous observations, in which the positive correlation between the flux and hardness was widely reported. By equating the halving decay timescale in the January flare, td2.5×104t_{\rm d} \sim 2.5 \times 10^{4} s, to the synchrotron cooling time, the magnetic field was evaluated as B = 0.045 G (δ/10)1/3(\delta/10)^{-1/3}, where δ\delta is the jet beaming factor. Assuming that the light crossing time of the emission region is shorter than the doubling rise time, tr2×104t_{\rm r} \lesssim 2 \times 10^{4} s, the region size was roughly estimated as R<6×1015 R < 6 \times 10^{15} cm (δ/10)(\delta/10). These are consistent with the values previously reported. For the February flare, the rise time, tr<1.3×105t_{\rm r} < 1.3 \times 10^{5} s, gives a loose upper limit on the size as R<4×1016 R < 4 \times 10^{16} cm (δ/10)(\delta/10), although the longer decay time td1.4×105t_{\rm d} \sim 1.4 \times 10^{5} s, indicates B = 0.015 G (δ/10)1/3(\delta/10)^{-1/3}, which is weaker than the previous results. This could be reconciled by invoking a scenario that this flare is a superposition of unresolved events with a shorter timescale.Comment: 14 pages, 4 figures, accepted for PASJ (Vol. 62 No. 6
    corecore