287 research outputs found

    Hamiltonian simulation using quantum singular value transformation: complexity analysis and application to the linearized Vlasov-Poisson equation

    Full text link
    Quantum computing can be used to speed up the simulation time (more precisely, the number of queries of the algorithm) for physical systems; one such promising approach is the Hamiltonian simulation (HS) algorithm. Recently, it was proven that the quantum singular value transformation (QSVT) achieves the minimum simulation time for HS. An important subroutine of the QSVT-based HS algorithm is the amplitude amplification operation, which can be realized via the oblivious amplitude amplification or the fixed-point amplitude amplification in the QSVT framework. In this work, we execute a detailed analysis of the error and number of queries of the QSVT-based HS and show that the oblivious method is better than the fixed-point one in the sense of simulation time for a given error tolerance. Based on this finding, we apply the QSVT-based HS to the one-dimensional linearized Vlasov-Poisson equation and demonstrate that the linear Landau damping can be successfully simulated.Comment: 18 pages, 14 figure

    High-aspect-ratio copper via filling used for three-dimensional chip stacking

    Get PDF
    Through-chip electrodes for three-dimensional packaging can offer short interconnection and reduced signal delay. Formation of suitable vias by electrodeposition into cavities presents a filling problem similar to that encountered in the damascene process. Because via dimensions for through-chip filling are larger and have a higher aspect ratio relative to features in damascene, process optimization requires modification of existing superconformal plating baths and plating parameters. In this study, copper filling of high-aspect-ratio through-chip vias was investigated and optimized with respect to plating bath composition and applied current wavetrain. Void-free vias 70 mu m deep and 10 mu m wide were formed in 60 min using additives in combination with pulse-reverse current and dissolved-oxygen enrichment. The effects of reverse current and dissolved oxygen on the performance of superfilling additives is discussed in terms of their effects on formation, destruction, and distribution of a Cu(I) thiolate accelerant. (c) 2005 The Electrochemical Society. All rights reserved. </p

    NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor

    Get PDF
    Inhibition of NF-κB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-κB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-κB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-κB inhibitors to rheumatoid arthritis therapy
    corecore