101 research outputs found

    Biomimetic design of an α-ketoacylphosphonium-based light-activated oxygenation auxiliary

    Get PDF
    The biomimetic design of a transition metal complex based on the iron(IV)-oxo porphyrin π-cation radical species in cytochrome P450 enzymes has been studied extensively. Herein, we translate the functions of this iron(IV)-oxo porphyrin π-cation radical species to an α-ketoacyl phosphonium species comprised of non-metal atoms and utilize it as a light-activated oxygenation auxiliary for ortho-selective oxygenation of anilines. Visible light irradiation converts the α-ketoacyl phosphonium species to the excited state, which acts as a transiently generated oxidant. The intramolecular nature of the process ensures high regioselectivity and chemoselectivity. The auxiliary is easily removable. A one-pot protocol is also described

    Clonal Expansion of Multidrug-Resistant <i>Streptococcus dysgalactiae</i> Subspecies <i>equisimilis</i> Causing Bacteremia, Japan, 2005–2021

    Get PDF
    Incidence of Streptococcus dysgalactiae subspecies equisimilis (SDSE) bacteremia is increasing in the Kyoto-Shiga region of Japan. We retrospectively analyzed clinical features of SDSE bacteremia and conducted comparative genomic analyses of isolates collected from 146 bacteremia episodes among 133 patients during 2005-2021. Of those patients, 7.7% required vasopressor support, and 7.0% died while in the hospital. The prevalence of isolates resistant to erythromycin, minocycline, and clindamycin increased from 8.6% during 2005-2017 to 21.6% during 2018-2021. Our genomic analysis demonstrated that sequence type 525 and clonal complex 25 were predominant in SDSE isolates collected during 2018-2021. In addition, those isolates had acquired 2 antimicrobial-resistance genes, ermB and tetM, via Tn916-like integrative and conjugative elements (ICEs). Phylogenetic analysis revealed clonal distribution of Tn916-like ICEs in SDSE isolates. Our findings suggest that Tn916-like ICEs contributed to the emergence and recent increase of multidrug-resistant SDSE bacteremia in this region of Japan

    Synthesis of tertiary alkylphosphonate oligonucleotides through light-driven radical-polar crossover reactions

    Get PDF
    光エネルギーで新しい化学修飾核酸を合成 --核酸リン原子の第三級アルキル化に成功--. 京都大学プレスリリース. 2023-11-01.Chemical modification of nucleotides can improve the metabolic stability and target specificity of oligonucleotide therapeutics, and alkylphosphonates have been employed as charge-neutral replacements for naturally-occurring phosphodiester backbones in these compounds. However, at present, the alkyl moieties that can be attached to phosphorus atoms in these compounds are limited to methyl groups or primary/secondary alkyls, and such alkylphosphonate moieties can degrade during oligonucleotide synthesis. The present work demonstrates the tertiary alkylation of the phosphorus atoms of phosphites bearing two 2’-deoxynuclosides. This process utilizes a carbocation generated via a light-driven radical-polar crossover mechanism. This protocol provides tertiary alkylphosphonate structures that are difficult to synthesize using existing methods. The conversion of these species to oligonucleotides having charge-neutral alkylphosphonate linkages through a phosphoramidite-based approach was also confirmed in this study

    Loss of Tumor Necrosis Factor Production by Human Monocytes in Falciparum Malaria after Their Maturation in Vitro

    Get PDF
    In Plasmodium-infected mammals, phagocytosis and production of tumor necrosis factor (TNF) by monocytes and macrophages are prominent features. The present work aimed at clarifying the relationship between the maturation of human monocytes to macrophages and their TNF productivity and phagocytic ability in the presence of Plasmodium falciparum-infected erythrocytes. Fresh monocytes produced a significantly higher quantity of TNF in the presence of schizont-infected erythrocytes than macrophages obtained by in vitro monocyte maturation on autologous serum, whereas phagocytic activity of macrophages was much higher than that of fresh monocytes. This indicated that the TNF-inducing factors from P. falciparum-infected erythrocytes could stimulate fresh monocytes, but not macrophages, to release TNF, regardless of their development of phagocytosis. Activation of macrophages by interferon-{gamma} could not recover their TNF productivity in the presence of P. falciparum-infected erythrocytes, but it enhanced their TNF productivity in the presence of lipopolysaccharide(s). The TNF-inducing factors were contained mainly in erythrocytes infected with mature schizonts but not in erythrocytes infected with the younger stages of the parasites. Fractionation of infected erythrocytes revealed that both soluble and insoluble components almost equally contained those factors

    Oral hypofunction in the older population : Position paper of the Japanese Society of Gerodontology in 2016

    Get PDF
    Background: There is growing international interest in identifying the effects of ageing on oral health and on appropriate strategies for managing oral disorders. The Japanese Society of Gerodontology (JSG), as the official representative of researchers and clinicians interested in geriatric dentistry in Japan, makes several recommendations on the concept of “oral hypofunction.” Aims: This study proposes diagnostic criteria and management strategies to reduce the risk of oral hypofunction among older people. Conceptual Framework: We define oral hypofunction as a presentation of 7 oral signs or symptoms: oral uncleanness; oral dryness; decline in occlusal force; decline in motor function of tongue and lips; decline in tongue pressure; decline in chewing function; and decline in swallowing function. The criteria of each symptom were determined based on the data of previous studies, and oral hypofunction was diagnosed if the criteria for 3 or more signs or symptoms were met. Conclusions: We recommend that more evidence should be gathered from clinical studies and trials to clarify our diagnostic criteria and management strategies

    Practical "1-2-3-4-Day" Rule for Starting Direct Oral Anticoagulants After Ischemic Stroke With Atrial Fibrillation: Combined Hospital-Based Cohort Study

    Get PDF
    BACKGROUND: The "1-3-6-12-day rule" for starting direct oral anticoagulants (DOACs) in patients with nonvalvular atrial fibrillation after acute ischemic stroke or transient ischemic attack recommends timings that may be later than used in clinical practice. We investigated more practical optimal timing of DOAC initiation according to stroke severity. METHODS: The combined data of prospective registries in Japan, Stroke Acute Management with Urgent Risk-factor Assessment and Improvement-nonvalvular atrial fibrillation (September 2011 to March 2014) and RELAXED (February 2014 to April 2016) were used. Patients were divided into transient ischemic attack and 3 stroke subgroups by the National Institutes of Health Stroke Scale score: mild (0-7), moderate (8-15), and severe (≥16). The early treatment group was defined as patients starting DOACs earlier than the median initiation day in each subgroup. Outcomes included a composite of recurrent stroke or systemic embolism, ischemic stroke, and severe bleeding within 90 days. Six European prospective registries were used for validation. RESULTS: In the 1797 derivation cohort patients, DOACs were started at median 2 days after transient ischemic attack and 3, 4, and 5 days after mild, moderate, and severe strokes, respectively. Stroke or systemic embolism was less common in Early Group (n=785)-initiating DOACS within 1, 2, 3, and 4 days, respectively-than Late Group (n=1012) (1.9% versus 3.9%; adjusted hazard ratio, 0.50 [95% CI, 0.27-0.89]), as was ischemic stroke (1.7% versus 3.2%, 0.54 [0.27-0.999]). Major bleeding was similarly common in the 2 groups (0.8% versus 1.0%). On validation, both ischemic stroke (2.4% versus 2.2%) and intracranial hemorrhage (0.2% versus 0.6%) were similarly common in Early (n=547) and Late (n=1483) Groups defined using derivation data. CONCLUSIONS: In Japanese and European populations, early DOAC initiation within 1, 2, 3, or 4 days according to stroke severity seemed to be feasible to decrease the risk of recurrent stroke or systemic embolism and no increase in major bleeding. These findings support ongoing randomized trials to better establish the optimal timing of DOAC initiation

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover

    Get PDF
    光駆動型セミピナコール転位反応の開発に成功 --複雑なカルボニル化合物の自在合成に期待--. 京都大学プレスリリース. 2022-05-17.Over the past century, significant progress in semipinacol rearrangement involving 1, 2-migration of α-hydroxy carbocations has been made in the areas of catalysis and total synthesis of natural products. To access the α-hydroxy carbocation intermediate, conventional acid-mediated or electrochemical approaches have been employed. However, the photochemical semipinacol rearrangement has been underdeveloped. Herein, we report the organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover (RPC). A phenothiazine-based organophotoredox catalyst facilitates the generation of an α-hydroxy non-benzylic alkyl radical followed by oxidation to the corresponding carbocation, which can be exploited to undergo the semipinacol rearrangement. As a result, the photochemical approach enables decarboxylative semipinacol rearrangement of β-hydroxycarboxylic acid derivatives and alkylative semipinacol type rearrangement of allyl alcohols with carbon electrophiles, producing α-quaternary or α-tertiary carbonyls bearing sp³-rich scaffolds
    corecore