339 research outputs found

    Right hypoplastic kidney

    Get PDF

    Trimerization and genotype-phenotype correlation of COL4A5 mutants in Alport syndrome

    Get PDF
    INTRODUCTION: Alport syndrome is a hereditary glomerulonephritis that results from the disruption of collagen α345(IV) heterotrimerization caused by mutation in METHODS: We selected 9 α5(IV) missense mutants with typical glycine substitutions that clinically differed in disease progression. To quantify the trimerization of each mutant, split nanoluciferase-fused α3/α5 mutants and α4 were transfected into the cells, and intracellular and secreted heterotrimer were detected by luminescence using an assay that we developed previously. RESULTS: Trimer formation and secretion patterns tended to be similar to the wild type in most of the mutations that did not show proteinuria at a young age. On the other hand, trimer secretion was significantly reduced in all the mutations that showed proteinuria and early onset of renal failure. One of these mutants has low ability of intracellular trimer formation, and the others had the defect of low-level secretion. In addition, the mutant that is assumed to be nonpathogenic has similar trimer formation and secretion pattern as wild-type α5(IV). CONCLUSION: The result of cell-based α345(IV) heterotrimer formation assay was largely correlated with clinical genotype-phenotype. These trimerization assessments provide additional phenotypic considerations and may help to distinguish between pathogenic and nonpathogenic mutations

    iPSC-derived type IV collagen α5-expressing kidney organoids model Alport syndrome

    Get PDF
    ヒトiPS細胞から作製した腎オルガノイドを用いたアルポート症候群病態モデルの開発. 京都大学プレスリリース. 2023-09-28.iPSC-derived kidney organoids to model a lifelong renal disease. 京都大学プレスリリース. 2023-10/17.Alport syndrome (AS) is a hereditary glomerulonephritis caused by COL4A3, COL4A4 or COL4A5 gene mutations and characterized by abnormalities of glomerular basement membranes (GBMs). Due to a lack of curative treatments, the condition proceeds to end-stage renal disease even in adolescents. Hampering drug discovery is the absence of effective in vitro methods for testing the restoration of normal GBMs. Here, we aimed to develop kidney organoid models from AS patient iPSCs for this purpose. We established iPSC-derived collagen α5(IV)-expressing kidney organoids and confirmed that kidney organoids from COL4A5 mutation-corrected iPSCs restore collagen α5(IV) protein expression. Importantly, our model recapitulates the differences in collagen composition between iPSC-derived kidney organoids from mild and severe AS cases. Furthermore, we demonstrate that a chemical chaperone, 4-phenyl butyric acid, has the potential to correct GBM abnormalities in kidney organoids showing mild AS phenotypes. This iPSC-derived kidney organoid model will contribute to drug discovery for AS

    Spontaneous remission in children with IgA nephropathy

    Get PDF
    Abstract Background Some patients with IgA nephropathy (IgAN) achieve spontaneous remission even when not receiving medication. However, details on such remissions remain unknown. The aim of our study was to clarify this information in the clinical setting of childhood IgAN with minor glomerular abnormalities or focal mesangial proliferation (MGA/FMP). Methods This study was a retrospective analysis of 96 children with MGA/FMP who did not receive medication from among the 555 patients with newly diagnosed childhood IgAN treated between January 1972 and December 2000. The Kaplan-Meier method and Cox proportional hazard model were used for the analysis. Results Of the 96 pediatric patients who did not receive medication, 57 (59.4 %) achieved spontaneous remission. The cumulative spontaneous remission rates among these patients were 57.5 and 77.4 % at 5 and 10 years, respectively, from onset. The mean time from onset to remission was 5.9±0.4 years. Clinical and histological findings were similar between the remission and non-remission groups. Of the 57 patients with spontaneous remissions, ten (17.5 %) also developed a recurrence of urinary abnormalities. The cumulative recurrence-free rates were 79.9 and 67.9 % at 5 and 10 years, respectively, after remission. Conclusions The spontaneous remission rate in childhood IgAN with MGA/FMP was higher than expected. Our results suggest that physicians should consider the potential for spontaneous remission and refrain from very aggressive treatment in IgAN patients with MGA/FMP

    Three Severe Cases of Viral Infections with Post-Kidney Transplantation Successfully Confirmed by Polymerase Chain Reaction and Flow Cytometry

    Get PDF
    Viral infections in patients with post-kidney transplantation are often difficult to diagnose as well as treat. We herein report three cases with severe viral infections after kidney transplantation. All their causative pathogens could be detected promptly by polymerase chain reaction and flow cytometry during the early stages of infection. These examinations would also be of great use to monitor therapeutic responses and disease activity. It is indeed true that no specific treatment is available for most of the viral infections, but we should be aware that some infections, such as Epstein-Barr virus infection, can be treatable with prompt and specific treatment, such as rituximab

    Improved renal survival in Japanese children with IgA nephropathy

    Get PDF
    Since the beginning of the 1990s, Japanese medical practitioners have extensively prescribed angiotensin-converting enzyme (ACE) inhibitors for children with mild IgA nephropathy (IgA-N) and steriods for those with severe IgA-N. We have performed a retrospective cohort study to clarify whether the long-term outcome has improved in Japanese children with IgA-N. Renal survival was defined as the time from onset to end-stage renal disease (ESRD). We divided the study period into two time periods based on the occurrence of the initial renal biopsy:1976–1989 and 1990–2004. Actuarial survivals were calculated by Kaplan–Meier method, and comparisons were made with the logrank test. The Cox proportional hazard model was used for multivariate analysis. Between 1976 and 2004, 500 children were diagnosed as having IgA-N in our hospitals. The actuarial renal survival from the time of apparent disease onset was 96.4% at 10 years, 84.5% at 15 years and 73.9% at 20 years. Renal survival in the 1990–2004 period was significantly better than that in 1976–1989 (p = 0.008), and a marked improvement in renal survival in patients with severe IgA-N was also observed (p = 0.0003). Multivariate analysis indicated that diagnosis year was a significant factor for ESRD-free survival independently of baseline characteristics. The results of this study show that there has been an improvement in terms of renal survival in Japanese children with IgA-N

    Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal dominant pseudohypoaldosteronism type 1 (PHA1) is a rare inherited condition that is characterized by renal resistance to aldosterone as well as salt wasting, hyperkalemia, and metabolic acidosis. Renal PHA1 is caused by mutations of the human mineralcorticoid receptor gene (<it>MR</it>), but it is a matter of debate whether <it>MR </it>mutations cause mineralcorticoid resistance via haploinsufficiency or dominant negative mechanism. It was previously reported that in a case with nonsense mutation the mutant mRNA was absent in lymphocytes because of nonsense mediated mRNA decay (NMD) and therefore postulated that haploinsufficiency alone can give rise to the PHA1 phenotype in patients with truncated mutations.</p> <p>Methods and Results</p> <p>We conducted genomic DNA analysis and mRNA analysis for familial PHA1 patients extracted from lymphocytes and urinary sediments and could detect one novel splice site mutation which leads to exon skipping and frame shift result in premature termination at the transcript level. The mRNA analysis showed evidence of wild type and exon-skipped RT-PCR products.</p> <p>Conclusion</p> <p>mRNA analysis have been rarely conducted for PHA1 because kidney tissues are unavailable for this disease. However, we conducted RT-PCR analysis using mRNA extracted from urinary sediments. We could demonstrate that NMD does not fully function in kidney cells and that haploinsufficiency due to NMD with premature termination is not sufficient to give rise to the PHA1 phenotype at least in this mutation of our patient. Additional studies including mRNA analysis will be needed to identify the exact mechanism of the phenotype of PHA.</p
    corecore