383 research outputs found

    Evaluation of water film by reynolds' equation in deep drawing using high-pressured water jet

    Get PDF
    The authors had proposed a deep drawing method using high-pressured jet waters as lubricant. This method aimed to suppress the usage of oil or other chemical lubricants, which might require some additional processes for lubricant removal and become a nuisance in environment. The conditions had been determined through trial and error approach without knowing water behaviors as lubricant. As a result, some scars and dimples were observed on the surface of deformed cup. In the present paper, a numerical model was composed for the evaluation of the water behaviors as lubricant. Darcy-Weisbach equation was used for evaluation of pressure drop between nozzle exit and pump, while Reynolds' equation was used for the thin film of fluid between the die and blank. The data of blank deformation in FEM was considered for the determination of the thickness distribution of the fluid film. The characteristics of the water were evaluated by the composed numerical method, and the results were used for examination of lubrication characteristics in experiments

    TGF-β1 and IL-4 induce CCL11 production

    Get PDF
    Transforming growth factor (TGF)-β1 is a multifunctional cytokine, which can control certain functions of various kinds of cells. However, it is unclear whether TGF-β1 affects T-cell migration in periodontal lesions. The aim of this study was to examine the effects of TGF-β1 on the production of C-C chemokine ligand (CCL)11, which is a T-helper 2-type chemokine, in human periodontal ligament cells (HPDLC). Interleukin (IL)-4 induced CCL11 production, but TGF-β1 did not, in HPDLC. However, TGF-β1 enhanced CCL11 production in IL-4-stimulated HPDLC. Western blot analysis showed that the signal transducer and activator of transcription 6 (STAT6) pathway was highly activated in HPDLC that had been stimulated with both IL-4 and TGF-β1. Mitogen-activated protein kinase activation did not differ between the HPDLC treated with a combination of IL-4 and TGF-β1 and those treated with IL-4 or TGF-β1 alone. Moreover, a STAT6 inhibitor significantly inhibited CCL11 production in HPDLC that had been stimulated with IL-4 and TGF-β1. The current study clearly demonstrated that TGF-β1 enhanced IL-4-induced CCL11 production in HPDLC. The STAT6 pathway is important for CCL11 production in IL-4- and TGF-β1-treated HPDLC

    Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration

    Get PDF
    Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin-yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin-yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described

    The Polymethoxy Flavonoid Sudachitin Inhibits Interleukin-1β-Induced Inflammatory Mediator Production in Human Periodontal Ligament Cells

    Get PDF
    Sudachitin, which is a polymethoxylated flavonoid found in the peel of Citrus sudachi, has some biological activities. However, the effect of sudachitin on periodontal resident cells is still uncertain. The aim of this study was to examine if sudachitin could decrease the expression of inflammatory mediators such as cytokines, chemokines, or matrix metalloproteinase (MMP) in interleukin- (IL-) 1β-stimulated human periodontal ligament cells (HPDLC). Sudachitin inhibited IL-1β-induced IL-6, IL-8, CXC chemokine ligand (CXCL)10, CC chemokine ligand (CCL)2, MMP-1, and MMP-3 production in HPDLC. On the other hand, tissue inhibitor of metalloproteinase- (TIMP-) 1 expression was increased by sudachitin treatment. Moreover, we found that the nuclear factor- (NF-) κB and protein kinase B (Akt) pathways in the IL-1β-stimulated HPDLC were inhibited by sudachitin treatment. These findings indicate that sudachitin is able to reduce inflammatory mediator production in IL-1β-stimulated HPDLC by inhibiting NF-κB and Akt pathways

    Nobiletin Inhibits Inflammatory Reaction in Interleukin-1β-Stimulated Human Periodontal Ligament Cells

    Get PDF
    The immune response in periodontal lesions is involved in the progression of periodontal disease. Therefore, it is important to find a bioactive substance that has anti-inflammatory effects in periodontal lesions. This study aimed to examine if nobiletin, which is found in the peel of citrus fruits, could inhibit inflammatory responses in interleukin (IL)-1β-stimulated human periodontal ligament cells (HPDLCs). The release of cytokines (IL-6, IL-8, CXCL10, CCL20, and CCL2) and matrix metalloproteinases (MMP-1 and MMP-3) was assessed by ELISA. The expression of cell adhesion molecules (ICAM-1and VCAM-1) and the activation of signal transduction pathways (nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt)) in HPDLCs were detected by Western blot analysis. Our experiments revealed that nobiletin decreased the expression of inflammatory cytokines, cell adhesion molecules, and MMPs in IL-1β-stimulated HPDLCs. Moreover, we revealed that nobiletin treatment could suppress the activation of the NF-κB, MAPKs, and Akt pathways. These findings indicate that nobiletin could inhibit inflammatory reactions in IL-1β-stimulated HPDLCs by inhibiting multiple signal transduction pathways, including NF-κB, MAPKs, and Akt

    Basal ganglia-cortical connectivity underlies self-regulation of brain oscillations in humans

    Get PDF
    Brain-Computer Interface操作の得手不得手に関わる脳回路を発見 --操作を「考える」か「感じる」か、個人差に合わせた技術開発へ期待--. 京都大学プレスリリース. 2022-08-10.Brain-computer interfaces provide an artificial link by which the brain can directly interact with the environment. To achieve fine brain-computer interface control, participants must modulate the patterns of the cortical oscillations generated from the motor and somatosensory cortices. However, it remains unclear how humans regulate cortical oscillations, the controllability of which substantially varies across individuals. Here, we performed simultaneous electroencephalography (to assess brain-computer interface control) and functional magnetic resonance imaging (to measure brain activity) in healthy participants. Self-regulation of cortical oscillations induced activity in the basal ganglia-cortical network and the neurofeedback control network. Successful self-regulation correlated with striatal activity in the basal ganglia-cortical network, through which patterns of cortical oscillations were likely modulated. Moreover, basal ganglia-cortical network and neurofeedback control network connectivity correlated with strong and weak self-regulation, respectively. The findings indicate that the basal ganglia-cortical network is important for self-regulation, the understanding of which should help advance brain-computer interface technology

    Retrotransposons Manipulating Mammalian Skeletal Development in Chondrocytes

    Get PDF
    Retrotransposons are genetic elements that copy and paste themselves in the host genome through transcription, reverse-transcription, and integration processes. Along with their proliferation in the genome, retrotransposons inevitably modify host genes around the integration sites, and occasionally create novel genes. Even now, a number of retrotransposons are still actively editing our genomes. As such, their profound role in the evolution of mammalian genomes is obvious; thus, their contribution to mammalian skeletal evolution and development is also unquestionable. In mammals, most of the skeletal parts are formed and grown through a process entitled endochondral ossification, in which chondrocytes play central roles. In this review, current knowledge on the evolutional, physiological, and pathological roles of retrotransposons in mammalian chondrocyte differentiation and cartilage development is summarized. The possible biological impact of these mobile genetic elements in the future is also discussed
    corecore