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ARTICLE

Basal ganglia-cortical connectivity underlies
self-regulation of brain oscillations in humans
Kazumi Kasahara 1,2,3,5, Charles S. DaSalla 1,2,5, Manabu Honda2 & Takashi Hanakawa1,2,4,5✉

Brain-computer interfaces provide an artificial link by which the brain can directly interact

with the environment. To achieve fine brain-computer interface control, participants must

modulate the patterns of the cortical oscillations generated from the motor and somato-

sensory cortices. However, it remains unclear how humans regulate cortical oscillations, the

controllability of which substantially varies across individuals. Here, we performed simulta-

neous electroencephalography (to assess brain-computer interface control) and functional

magnetic resonance imaging (to measure brain activity) in healthy participants. Self-

regulation of cortical oscillations induced activity in the basal ganglia-cortical network and the

neurofeedback control network. Successful self-regulation correlated with striatal activity in

the basal ganglia-cortical network, through which patterns of cortical oscillations were likely

modulated. Moreover, basal ganglia-cortical network and neurofeedback control network

connectivity correlated with strong and weak self-regulation, respectively. The findings

indicate that the basal ganglia-cortical network is important for self-regulation, the under-

standing of which should help advance brain-computer interface technology.
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Brain-computer interfaces (BCIs) provide an artificial link by
which the brain can interact with the environment without
using bodily effectors or sensors1–4. In BCIs, signals from

the brain are retrieved and decoded to control external devices.
Neurofeedback (NFB) is a related technique which encourages
users to control their own brain activity according to decoded
brain signals5–8. Potentials for real-world applications are emer-
ging for both BCIs9–13 and NFB14–18, though these techniques
have limitations. Brain networks of BCI/NFB users are engaged in
fine-tuning their own neural states, involving self-regulation of
brain activity or connectivity7,19–22. Furthermore, BCI/NFB per-
formance varies across individuals, reflecting interindividual dif-
ferences in the self-control of brain states23–27. Some participants
fail to self-regulate brain activity, even after repeated training
sessions18,28,29.

Further development of BCI technology may overcome those
limitations30, but the issue will remain for NFB, which inherently
relies on the ability to self-regulate brain activity (here, referred to
simply as self-regulation). How organisms achieve self-regulation
remains unknown, despite continued efforts to identify the
underlying neural mechanisms and their correlates18.

Self-regulation may involve the neurofeedback control network
(NfCN), which includes the anterior insula cortex (AIC), anterior
cingulate cortex, supplementary motor area (SMA), dorsolateral
prefrontal cortex (dlPFC), lateral occipital cortex, and superior
and inferior parietal lobules (SPL and IPL, respectively)14,16. The
NfCN corresponds primarily to the cognitive control network22,
which has been implicated in top-down cognitive control. Thus,
The NfCN might subserve the top-down control of self-regulation
on the basis of explicit knowledge about the strategy (i.e., think
strategy)31. Alternatively, the basal ganglia-cortical network
(BgCN), which underlies behaviors stemming from trial-and-
error-type procedural learning, may be the core neural correlate
of BCI/NFB control32,33. Compelling evidence from rodents
indicates that corticostriatal connectivity conveys essential
information for BCI-based operant conditioning21. Previous
evidence points to the role of the BgCN in intuitive control of
behaviors22,34, which may be called the feel strategy.

To investigate brain activity and connectivity during self-reg-
ulation, electroencephalography (EEG)-based BCI can be com-
bined with functional magnetic resonance imaging (fMRI).
Hinterberger et al.33 conducted a pioneering concurrent BCI-MRI

study with a sparse sampling method, revealing roles for both the
NfCN and BgCN in self-regulation. More recently, a few con-
current BCI-fMRI studies reported the neural signature of motor
imagery32 and sense of control35. These studies also indicated
that cortical and subcortical regions are activated during a BCI-
related task, but how the NfCN18 and BgCN21 jointly or distinctly
contribute to self-regulation remains unknown. The NfCN and
BgCN are not independent but, rather, are interconnected. Recent
evidence indicates that part of the striatum may serve as a hub for
different BgCN networks36, requiring revision of the canonical
theory of parallel and largely segregated BgCN circuits37. Intri-
guingly, the connectivity of the striatum reflects individual
variability in brain functions38, which potentially accounts for the
interindividual variability in self-regulation.

Here, we hypothesized that the intuitive BgCN and logical
NfCN would play distinct roles in self-regulation during BCI. We
also tested if the dorsal striatum serves as a hub interconnecting
the NfCN and BgCN. We show that the relative involvement of
NfCN and BgCN in self-regulation reflects interindividual dif-
ferences in BCI performance.

Results
BCI task. Twenty-six healthy adults participated in the con-
current BCI-fMRI experiment. Each trial began with a pre-
sentation of a horizontal bar at the bottom of the screen
indicating the left target (LT), the right target (RT), or a rest
(Fig. 1a). A falling cursor was then displayed for 4 s, during which
its horizontal positioning was controlled by the laterality of the
alpha-band (9.5–12.5 Hz) sensorimotor rhythms (SMRs) com-
puted from electrodes C3 and C423. The BCI task was to move
the falling cursor horizontally to hit the target by modulating
SMR laterality. For the RT and LT trials, participants were
instructed to use first-person kinesthetic imagery of finger-thumb
oppositions with the right and left hands, respectively. First-
person kinesthetic imagery refers to a task by which the partici-
pants imagine themselves performing an action with an asso-
ciated proprioceptive (not visual) sensation39. The rest trials
served as a perceptive control, during which participants were
asked to pay attention to the falling cursor without performing
motor imagery. After each trial, participants were briefly notified
about whether the trial was a hit or a miss (outcome period).
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BCI performance. The BCI experiment was performed over two
sessions, including one practice session that was performed out-
side the MRI scanner while seated in a chair (outMRI) and one
session that was completed inside the MRI scanner during con-
current BCI-fMRI acquisition (inMRI). After excluding data from
two participants with excessive EEG artifacts, we evaluated the hit
rates for the remaining 24 participants. Hit rates were calculated
as the number of times the cursor hit an LT or RT divided by the
total number of LT and RT trials. Twenty participants controlled
the BCI significantly better than chance during the outMRI ses-
sion, and 14 participants also did so during the inMRI session
(P < 0.05, two-tailed exact binomial test; see Supplementary
Table 1). The hit rates varied across participants during both the
inMRI session (mean= 0.70 ± 0.13, range= 0.47–0.91) and out-
MRI session (mean= 0.60 ± 0.09, range= 0.45–0.80), but these
were strongly correlated (r= 0.83, P < 0.001; Fig. 1b). The offline
analyses of the inMRI EEG data and extracted spectral amplitude
(2–23 Hz, 3-Hz bins) showed that event-related desynchroniza-
tion (ERD) of SMRs occurred mostly within the 11-Hz bin
(9.5–12.5 Hz) (Supplementary Fig. 1). The SMR ERD was con-
tralateral to the BCI target and was correlated with BCI perfor-
mance (RT: r= 0.66, P < 0.001; LT: r=−0.69, P < 0.001). No
statistical differences were found between the LT, RT, and rest
trials for any electrooculogram or electromyographic electrode
channels (repeated measures ANOVA, P > 0.1 for each channel),
which indicates that BCI performance was not influenced by
overt eye or body movements (see Supplementary Note 1 for
details).

Cortical and subcortical activity during BCI control. We first
examined whole-brain fMRI signal changes during the RT and LT
trials (random-effects model analysis, n= 24; P < 0.05 cluster-
level family-wise error [FWE] corrected). Compared with that
during the rest trials, the self-regulation condition induced
widespread activity involving both the NfCN and the BgCN,
including the bilateral premotor (PM)-SMA, SPL, IPL, dlPFC,
AIC, visual areas, lateral occipital cortex, basal ganglia, thalamus,
and posterolateral cerebellum (lobule VI) (Fig. 2 and see Sup-
plementary Data 1 and Table 2 for details). In particular, the
primary motor cortex (M1), visual areas, and anteromedial cer-
ebellum (lobule V) showed lateralized activity regarding the RT
and LT tasks. Unexpectedly, ipsilateral M1 showed negative signal
changes contributing to the SMR laterality, whereas contralateral
M1 showed equivocal activity, which was not different from that
of the rest trials.

Striatal activity and corticosubcortical connectivity supporting
successful BCI control. To clarify the mechanisms underlying self-
regulation for BCI control, we explored activity throughout the brain
correlated with hit trials. Only the bilateral posterior putamen
demonstrated greater activity during hit trials than during miss trials
(t= 3.48, P < 0.05 cluster-level FWE corrected; Fig. 3a). Conversely,
cortical motor areas such as the SMA tended to show less activity
during hit trials than during miss trials (Fig. 3a and see Supple-
mentary Data 2 for details). We further examined whether this hit-
associated activity of the posterior putamen was present during the
BCI control period or during processing of information regarding
the hit/miss outcome presented at the end of each trial. The ventral
striatum, which is implicated in reward and motivational
processing40,41, was chosen as a control striatal subsector. To assess
the time course of brain activity, we identified volumes of interest
(VOIs) in the dorsal putamen connecting with the motor cortices
(motor putamen) and in the ventral striatum connecting with the
orbitofrontal cortex, as defined by diffusion MRI42. We found
greater activity in the motor putamen for the hit trials than for the

miss trials during the BCI control period (t(21)= 2.38, P= 0.027,
paired t-test), but not during the outcome presentation period
(t(21)= 1.49, P= 0.151) (Fig. 3b and see Supplementary Data 3 for
details). By contrast, activity in the ventral striatum was comparable
during the control periods (t(21)= 0.91, P= 0.375) with a trend
toward difference during the outcome period (t(21)= 1.86,
P= 0.077). This finding was supported by the analysis of the peak
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timing of the hit-minus-miss activity in the motor and ventral
striatum. The peak of the hit-minus-miss activity was mainly formed
during the BCI control period in the motor striatum whereas that
was observed during either the target presentation period or the
outcome presentation period in the ventral striatum. The timing of
the peak formation was significantly different between the motor
striatum and the ventral striatum (P= 0.046, Fisher’s Exact Test).
These findings suggest that motor striatal activity reflects brain
mechanisms for self-regulation rather than for processing of out-
come information related to a hit or miss.

These results also suggested that the motor striatum plays a role in
successful self-regulation. However, it remained unclear how motor
striatum activity influences BCI performance as determined by the
laterality of the ERD with motor and somatosensory cortices43. A
possibility was that the BgCN modulates SMRs. To test this
hypothesis, we performed a psychophysiological interaction (PPI)
analysis, using the left motor striatum as the seed (Fig. 4a). When
comparing hit and miss trials, the left motor striatum showed
increased connectivity (P < 0.05 FWE corrected) with the key nodes
of the BgCN: the PM-SMA (x, y, z=−2, 8, 58; Z= 4.55) and globus
pallidus (x, y, z=−24, −12, 2; Z= 5.13) extending into the
thalamus. Hit-related increased connectivity with the left motor
striatum was also observed in the cerebellum (x, y, z=−38, −52,
−40; Z= 4.27) and visual cortex (x, y, z=−12, −88, −6; Z= 3.92).
These results indicate the involvement of the BgCN44–46 and,
possibly, the cerebellar-basal ganglia circuit47,48 in successful
modulation of SMRs. Furthermore, the laterality of ERD, the critical
determinant of BCI performance, correlated with BgCN connectivity
during the hit trials but not during the miss trials (Fig. 4b). These
findings further corroborate that the motor striatum plays a pivotal
role in the self-regulation of SMRs by modulating the connectivity
within the BgCN.

Difference of functional brain networks related to individual
performance. Thus far, we found evidence for the role of the

BgCN, but not the NfCN, in the self-regulation of SMRs. Building
on previous studies on the neural mechanisms underlying BCI
and NFB23–26,49–51, we exploited interindividual differences in
self-regulation to test if the BgCN and NfCN jointly or distinctly
contribute to successful self-regulation.

We examined whether effective connectivity with the hit-
related motor striatum correlates with individual differences in
BCI performance. In the PPI analysis at the individual level, the
motor striatum showed various levels of effective connectivity
with not only the BgCN but also the NfCN. The motor striatum
regions of good performers tended to show connectivity with the
BgCN, while poor performers exhibited widespread striatal
connectivity with the BgCN and the NfCN (Fig. 5a).

We quantified the extent to which motor putamen connectivity
with the BgCN or NfCN correlates with individual differences in the
hit rate, using least absolute shrinkage and selection operator
(LASSO) regression analysis. The explanatory variables were the
connectivity values between the left motor striatum and the key
nodes of the BgCN and NfCN: M1, PM, SMA, thalamus,
cerebellum, IPL, SPL, AIC, dlPFC, and lateral occipital cortex (see
Supplementary Table 2). This LASSO model predicted individual
differences in BCI performance, with an R2 of 0.87. The left PM and
right M1 showed positive weights, indicating stronger BgCN
connectivity for good performers. Conversely, the right dlPFC,
IPL, PM, and cerebellum as well as the left lateral occipital cortex
and AIC showed negative weights, implicating poor performance for
strong striatum-NfCN connectivity (Fig. 5b and see Supplementary
Data 4 for details). These results indicated that strong striatum-
BgCN connectivity coupled with weak striatum-NfCN connectivity
underlies the individual differences in self-regulation.

Discussion
We showed that activity and connectivity of the BgCN reflects
controllability of a BCI at both within-individual (hit vs. miss)
and interindividual levels, providing evidence that BgCN
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supports the self-regulation of SMRs. Rather unexpectedly, the
recruitment of the NfCN, which might reflect attempted top-
down control over a BCI/NFB task18, had a detrimental impact
on self-regulation.

Consistent with previous work32,35, the BCI task used in this
study recruited motor-related cortical and subcortical areas.
Contralateral M1 activity did not differ between the task and rest
periods (see Fig. 2); this finding agrees with previous studies
showing equivocal M1 activity during motor imagery52,53.
However, our finding of a decrease in ipsilateral M1 activity
during BCI seems novel to the best of our knowledge, and
requires some explanation. During unilateral hand movement,
ipsilateral M1 activity can be suppressed below a resting
baseline54. This phenomenon is usually interpreted as the man-
ifestation of interhemispheric inhibition. However, the concept of
interhemispheric inhibition does not explain the present finding,
because ipsilateral M1 activity decreased without increases in
contralateral M1 activity. We propose that, in addition to the
increase in neural/synaptic activity (activation), suppression of

activity below that seen at the rest baseline (i.e., deactivation) also
contributes to BCI task control. This interpretation is based on
the following considerations. Synchronized SMRs are a signature
of a deactivated or idling motor cortex43. Thus, a downregulation
of ipsilateral motor area activity to levels lower than those during
the rest periods should correlate with ipsilateral SMR synchro-
nization. In our study, increasingly synchronized SMRs in the
ipsilateral motor cortex enhanced ERD laterality, yielding better
BCI control (Supplementary Fig. 1c). Moreover, ipsilateral M1
connectivity with the striatum correlated with the individual
differences in self-regulation, supporting the effectiveness of the
ipsilateral deactivation strategy through the BgCN. This
hypothesis should be tested in future work, since the down-
regulation of brain activity below a given baseline is considered an
idiosyncratic strategy for BCI control22.

A key finding from the present study is that motor striatal
activity correlated with BCI performance. Striatal activity might
reflect processing of the outcome stimuli, corresponding to con-
summatory processes during the receipt of a reward40,41.
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Although we did not use explicit incentives such as monetary
rewards, striatal activity can be elicited merely by positive
reinforcement55. However, we considered this consummatory
motor striatal activity unlikely, because hit-related motor striatal
activity occurred during the BCI control period but not during
the outcome period. The hit-minus-miss activity formed different
peaks between the ventral striatum and motor striatum. Specifi-
cally, the peak was formed during the BCI control period in the
motor striatum and during the target and outcome presentation
periods in the ventral striatum. The striatal activity also correlated
with the trial-by-trial variation of the ERD laterality, further
supporting this idea (Supplementary Fig. 2). These findings
indicate that the motor striatum influences the formation of ERD
laterality critical for the control of the present BCI. The ventral
striatum, which underlies consummatory behavior41, exhibited
robust BCI task-related activity irrespective of the outcome. This
indicates that the ventral striatum supports the motivation
necessary to complete a BCI task56 regardless of whether the
response is a hit or miss.

Current BCIs often require a learning period before users can
achieve adequate control22,57,58. In the present study, BCI control
did not improve over the short experimental period during fMRI;
thus the hit-related striatal activity cannot be ascribed to BCI
learning. Still, we consider that the striatal activity might relate to
behaviors categorized as implicit and unsupervised learning based
on trial-and-error experiences31,59. Indeed, previous studies
found striatal activity during intuitive mental processes for trials
and errors33,60,61. Therefore, the motor striatum may serve self-
regulation through an intuitive feel type of strategy.

Increased striatal activity during the hit trials was accompanied
by increased effective connectivity with important nodes of the
BgCN (Fig. 4a). The BgCN constitutes a semiclosed loop impli-
cated in a variety of functions, including behavioral selection and
switch, procedural learning, and motor and cognitive vigor44,45.
The striatum may switch relevant networks according to the
behavior62,63. We also found that BgCN connectivity correlated
with ERD laterality, which was the critical determinant of BCI
performance (Fig. 4b). This finding provides evidence that the
striatum is involved in modulating brain rhythms through the
BgCN. Therefore, the striatum needs to be included as an
important module of the classic circuit for the generation of
SMRs: the thalamocortical circuit64,65. The goal-directed mod-
ulation of SMRs may relate to the striatum’s role in creating a
response bias in the cerebral cortex during demanding tasks46,66.

During the hit trials, the motor striatum also showed increased
effective connectivity with the cerebellum, which also exhibited
substantial BCI task-related activity. This suggests that the basal
ganglia interact with the cerebellum for successful BCI control.
Anatomical evidence indicates direct and reciprocal cerebellar-
basal ganglia circuits via the thalamus47,48, and these circuits may
thus contribute to BCI control via the thalamic region, as revealed
by the PPI analysis.

We instructed the participants to use a motor imagery strategy
to modulate the laterality of SMRs, raising a question of whether
the present results reflected performance of self-control or motor
imagery. Previous studies suggested that activity of the premotor-
parietal cortical areas (PMd/SMA, SPL and dlPFC) underlies
successful motor imagery performance when motor imagery
requires conscious tracking of imagined contents52. Consistently,
Halder et al. reported that the number of activated voxels in PMd/
SMA during motor observation and imagery correlated with BCI
performance24. Zich and colleagues pointed out the role of sen-
sorimotor areas as a signature of motor imagery32, Hence, the
substrates of conscious motor imagery performance are likely
situated in the fronto-parietal cortical network.

The motor striatum activity was specifically enhanced in the
successful BCI trials whereas fronto-parietal cortical network
including SMA was not correlated with the BCI hit or miss
(Fig. 3a). People with Parkinson’s disease in which motor stria-
tum is impaired due to dopamine deficiency show poor BCI
performance67 whereas they do not show poor performance of
conscious motor imagery unless the speed demand was
imposed42. In the present study, good BCI performers showed the
motor striatum linked functionally with the typical motor net-
work (PMd/SMA, cerebellum, SPL) while the motor striatum of
the poor BCI performers had a functional link not only with the
motor networks but also with the ACC, AIC, dlPFC, lateral
occipital cortex, and IPL involved in cognitive control. Therefore,
good BCI performers might be proficient in BCI self-regulation
since their striatum adequately selected the motor network. In
contrast, poor performers showed poor selectivity of the network
through the motor striatum summoning both the cognitive and
motor networks. This phenomenon may relate to the disinhibi-
tion of network seen in exploratory behaviors68. Hence, the
contribution of the motor striatum to BCI control was not just
the result of successful motor imagery but rather as a kind of hub
necessary for successful self-regulation.

The present results demonstrate that the BgCN and NfCN play
different roles in self-regulation. Good BCI performers exhibited
strong striatal connectivity with the BgCN, which included
regions that subserve an implicit or bottom-up strategy of
behavioral control31,59. BCI control may require striatal functions
to modulate activity in the cortical areas to lateralize ERD. By
contrast, the LASSO regression analysis revealed that NfCN
connectivity was detrimental for BCI performance. Poor BCI
performers exhibited stronger connectivity with the NfCN,
including the dlPFC, IPL, and lateral occipital cortex. This sug-
gests that the use of an effortful top-down or cognitive strategy
results in poor BCI performance. In other words, subjects who
exhibited poor BCI control might have adapted a think strategy to
control SMRs declaratively or explicitly according to the task
instructions about motor imagery. The improvement in BCI
performance through training may involve shifts in which neural
substrates are recruited, from those underlying cognitively
demanding control (NfCN: think) to those related more to
intuitive34 and automatic22 control (BgCN: feel). The employ-
ment of these two strategies at an early stage of learning may
explain the interindividual differences observed in this study.

The present findings indicate that it is better to feel than to
think to modulate SMRs as a BCI control signal. Researchers
should thus tell BCI experiment participants “Don’t think. Feel!
Don’t concentrate on the target but concentrate on the feeling
from the fingers.” Our findings indicate that altering the
instructions given to participants will promote the implementa-
tion of an effective strategy and thus reduce interindividual dif-
ferences in BCI controllability.

Methods
Participants. Twenty-six healthy participants (12 female; mean age ± standard
deviation [SD], 22.4 ± 2.9 years) participated in this study. Each participant per-
formed two outMRI runs and three inMRI runs, which were completed on dif-
ferent days. All participants took part in an outMRI study before the inMRI
study23. All participants were right-handed, as assessed using the Edinburgh
Handedness Inventory69, had normal or corrected-to-normal vision, reported no
history of neurological or psychological disorders, and had no prior BCI experi-
ence. Written informed consent was obtained from all participants before parti-
cipation, according to the study protocol that was approved by the institutional
review board of the National Center of Neurology and Psychiatry, Tokyo, Japan.
After visual inspection, data from two participants were discarded due to excessive
movement-related EEG artifacts during fMRI; hence, data from 24 participants
were analyzed.
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Simultaneous EEG-fMRI acquisition. EEG was used as a BCI control modality
because of its wide application in the field of neuroprosthetic control and
neurorehabilitation9–11. A prototypical BCI was employed that uses SMRs, which
arise from M1 and somatosensory cortices32,33,35,43. fMRI was used to measure
neural/synaptic activity throughout the brain, including NfCN and the BgCN.
Blood oxygen level-dependent (BOLD) fMRI acquisition was performed with a 3-T
MRI scanner (Magnetom Trio; Siemens, Erlangen, Germany) using a T2*-
weighted, gradient echo, echo planar imaging sequence (repetition time, 3 s; echo
time, 30 ms; flip angle, 90°; voxel size, 3.0 mm3; number of slices, 42). A total of
262 scans were acquired for each run. The first 45 scans were dummy scans to
minimize the transient effects of magnetic saturation and to initialize the artifact
correction and BCI classifier algorithms.

Electrophysiological data were simultaneously acquired using MRI-compatible
amplifiers (BrainAmp MR plus; Brain Products, Gilching, Germany) and a
customized EEG cap (BrainCap MR; Brain Products)70. The EEG cap consisted of
13 electrodes; nine were positioned over the sensorimotor area (F3, F4, C3, C4, Cz,
P3, P4, T7, and T8), one over the left eye (Fp1), one as the ground electrode (AFz),
one as the reference electrode (FCz), and one attached by a 35-cm lead and placed
on the back to record the electrocardiogram. Total impedances were kept at
<15 kΩ. Electromyograms over the left and right thenar muscles and horizontal
electrooculograms were also simultaneously acquired. Data were sampled at
5000 Hz and filtered with 0.1-Hz high-pass and 250-Hz low-pass hardware filters.

Online EEG artifact correction. To provide online BCI classification and online
feedback, MRI artifacts incurred on the EEG data were corrected online. According
to methods reported by Allen and colleagues71, artifact correction algorithms were
written in MATLAB R2007b (MathWorks, Natick, MA, USA) that operated in
conjunction with the BCI software. The system first corrected gradient artifacts,
which are millivolt-scale distortions in EEG that are caused by the switching
gradient magnetic fields of MRI. Exploiting the fact that gradient artifacts are
mostly stationary and phase locked to the repetition timing of a sequence, mean
gradient artifact templates were calculated for each channel and subtracted from
the incoming EEG.

After gradient artifact correction, the system then corrected for
ballistocardiogram artifacts, which are microvolt-scale deflections in the EEG
resulting from micromovements of the head that are induced by the pulsatile
acceleration of blood through the aortic arch72 and possibly also by the expansion
and contraction of scalp arteries71. The R peak of electrocardiogram precedes
artifacts by approximately 200 ms; this information was used to create a mean
ballistocardiogram template over the R-R interval for each channel, which was
subtracted from the EEG, similarly to the gradient artifact correction process.

To limit the effects of gross and ballistocardiogram-related head movements, a
custom-made vacuum cushion73 was placed around the participant’s head that
conformed to the space inside the MRI head coil. Finally, to reduce remnant
scanner-related noise and baseline drift, a 12th-order elliptic bandpass filter (1–23-
Hz bandpass, 0.1-dB passband ripple, and 20-dB attenuation) was applied after
ballistocardiogram artifact correction. Signals were then downsampled to 500 Hz
for further processing.

Brain-machine interface control and feedback. For the BCI system used in this
study, visual stimuli, feature extraction, and classification were all performed using
the BCI2000 software platform74. Participants were asked to perform two motor
imagery tasks: imagery of finger-thumb opposition with the left and right hands,
and a baseline rest task. For the imagery tasks, participants were instructed to use,
to the best of their ability, a first-person perspective and kinesthetic rather than
visual imagery75. Participants also overtly practiced the movements before the start
of the experiment.

Tasks were cued using visual stimuli (Fig. 1a) that were projected onto a mirror
attached to the MRI head coil. For each trial, a rectangular target appeared in the
lower left, lower right, or entire bottom portion of the display, which cued the LT,
RT, or rest task, respectively. After 1 s, a cursor appeared at the top center of the
screen and immediately began falling at a constant rate, such that it would reach
the bottom in 4 s. During imagery trials, participants were tasked with using motor
imagery to control the horizontal positioning of the cursor so that it would hit the
target at the bottom. During rest trials, participants were asked to passively watch
the display and refrain from performing the imagery tasks. When the cursor
reached the bottom, a 1-s interval ensued, during which the cursor and target either
turned yellow in the case of a hit trial or remained unchanged. The next trial began
after a 1-s intertrial interval with a blank screen.

Trials were organized into blocks, with each block containing three trials of the
same task. A run consisted of 11 pseudorandom permutations of LT and RT blocks
interleaved with 12 rest blocks. Each run began and ended with a rest block. The
first block of each task was used for classifier calibration and was discarded, leaving
a total of 30 LT, 30 RT, and 33 rest trials per run. To evaluate BCI performance, the
hit rate was calculated as the number of times the cursor hit the left or right target
divided by the number of imagery trials in each run for each participant. The hit
rate was calculated over all three runs, and the overall significance was compared
with chance (58%, P < 0.05, two-tailed exact binomial test). BCI performance was
pooled from three inMRI runs, as no differences in hit rate were found between
runs (F(1.9, 43.5)= 1.86, P= 0.17).

Feature extraction and cursor control. After undergoing noise reduction and
downsampling, feature extraction and classification were performed to provide BCI
control signals74. Electrodes over the sensorimotor area (F3, F4, C3, C4, Cz, P3, P4,
T7, and T8) were re-referenced to large Laplacian derivations for C3 and C4.
Spectral amplitudes for C3 and C4 were then computed using autoregressive
estimation76,77, with a window length of 500 ms and bin width of 3 Hz. For all
participants, spectral amplitudes were selected from the 9.5–12.5-Hz bin for feature
extraction, which allowed the BCI to be controlled with SMR desynchronizations
related to motor imagery43. The fixed 9.5–12.5-Hz bin was selected according to
the results of the previous outMRI study showing that it is effective for controlling
the BCI23. The use of a single frequency band also made it easier to analyze and
interpret all participants’ data as a group. Harmonic noise detected from the MRI
scanner precluded the inclusion of beta activity (13–30 Hz), which can be used for
BCI control.

A control signal for cursor movement was computed from the interhemispheric
difference (C4 minus C3) during ERD. At each time point, the control signal was
normalized to the zero mean and unit variance based on data from the previous
two trials of all three tasks. This normalization provided a linear classifier for the
RT and LT tasks. When the C4 spectral amplitude decreased relative to the
C3 spectral amplitude (i.e., was desynchronized), the cursor accelerated to the left.
Conversely, sufficient C3 desynchronization resulted in rightward cursor
movement.

fMRI data preprocessing. All fMRI data preprocessing and analyses were per-
formed using SPM8 (Wellcome Trust Center for Neuroimaging, London, UK). The
functional images underwent slice-timing correction and spatial realignment. The
realigned images were then normalized to the Montreal Neurological Institute
stereotactic space using the standard echo-planar imaging template in SPM8.
Finally, the normalized images were spatially smoothed using a Gaussian kernel of
6-mm full-width at half-maximum.

Statistics and Reproducibility. For the first-level analysis, within-subject task
effects were examined by including LT, RT, and rest as conditions plus head
motion parameters in a general linear model. Onset time and duration of fMRI
data corresponded to the 4-s BCI control intervals, during which the cursor was
moving and participants were controlling its position. Performance-related effects
were examined by including two binary parametric modulators corresponding to
the hit-and-miss trials for the LT and RT tasks.

The second-level analysis revealed greater bilateral dorsal striatum activity
during the hit trials than during the miss trials (Fig. 3a). We calculated the
difference in activity time-course between the hit and miss trials in the ventral
putamen and the motor putamen in each participant. We then identified the peak
of the hit-minus-miss activity in the 5 points (3 s, 6 s, 9 s, 12 s, and 15 s).
Considering the ~6 s delay of the hemodynamic responses, the 6-s time-point
corresponded to the target stimulus presentation, 9-s time-point to the BCI control,
and the 12-s time-point to the outcome presentation. The difference in the
distribution of the peak was compared across the ventral putamen and the motor
putamen, using a Fisher’s Exact Test for the 2 VOIs (motor striatum and ventral
striatum) and the 5-time points contingency tables (Fig. 3b). PPI analysis was
performed to examine functional coupling of the dorsal striatum with other regions
throughout the brain (Fig. 4). The dorsal striatum served as a seed region, with the
BOLD time series applied as a physiological variable, whereas the parametric
modulators from the hit/miss model were used as psychological variables. These
psychophysiological variables and their interaction were then applied in a model to
identify areas that were functionally coupled with the seed region.

For all designs, data were high-pass filtered (1/128-Hz cutoff) to remove low-
frequency drift, and realignment parameters acquired during preprocessing were
included to regress out head movement artifacts. Second-level, random-effect
model group analyses were then performed using contrast-weighted beta images
from the first-level analysis. The height threshold at the voxel level was set to a P
value of <0.001, and FWE correction at the cluster level (P < 0.05) was performed
using SPM8’s implementation of random field theory.

Striatum parcellation and fMRI. A map of striatal subdivisions was created using
a diffusion-based subcortical gray matter classification technique42,78,79. In brief,
diffusion tensor MR images (b= 1000 s/mm2) were collected from a separate group
(15 volunteers, 5 female, aged 26.7 ± 10.1 years), after obtaining written consent
and approval by the institutional ethics committee42. Probabilistic diffusion trac-
tography running between the whole striatum seed and the frontal cortical areas
was analyzed using FSL4.1. The cortical subdivision that had the highest con-
nectivity was identified after scaling connectivity in each cortical region relative to
the total for each voxel in the entire striatum. The ventral striatal VOI connecting
with the orbitofrontal cortex and the motor striatal VOI connecting with M1 and
Brodmann area 6, including the SMA and PM, were used. BOLD time series data
were extracted from these two striatal VOIs. To assess the time series, data from the
BCI control periods just after the rest trials were classified into hit and miss trials.
In this analysis, data from two participants were excluded (n= 22): one participant
had an extreme performance (no miss trials for the selected condition) and the
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other participant had bumpy BOLD time-series data (>2 SDs from the group data),
possibly due to head motion.

LASSO regression analysis of BCI performance. To predict task performance
during RT, LASSO regression (sklearn.linear_model; http://jupyter.org/) was
applied using connectivity with the left motor striatum as an explanatory variable.
The LASSO is a linear regression with an L1 norm penalty term (which thus
introduces sparseness)80. A hyperparameter for the penalty weight was determined
by 2-fold cross validation (α= 0.11). The explanatory variables were values of
connectivity with the left motor striatum, which were calculated from a 10-mm
spheric VOI set at the peak coordinate of each cluster in the fMRI analysis. VOIs
were set in the following 22 regions: the cerebellum, PM, SMA, AIC, M1, SPL, IPL,
dlPFC, lateral occipital cortex, motor striatum, and thalamus (all bilateral). To
assess model fitting, the correlation of the determination parameter was calculated
(R2= 0.87).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying figures are provided in Supplementary Data 1–4. Any additional
data that support the findings of this study are available from the corresponding author
upon reasonable request.
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