33 research outputs found

    Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro

    Get PDF
    In the present study, to investigate the mechanisms regulating carotenoid accumulation in citrus, a culture system was set up in vitro with juice sacs of three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). The juice sacs of all the three varieties enlarged gradually with carotenoid accumulation. The changing patterns of carotenoid content and the expression of carotenoid metabolic genes in juice sacs in vitro were similar to those ripening on trees in the three varieties. Using this system, the changes in the carotenoid content and the expression of carotenoid metabolic genes in response to environmental stimuli were investigated. The results showed that carotenoid accumulation was induced by blue light treatment, but was not affected by red light treatment in the three varieties. Different regulation of CitPSY expression, which was up-regulated by blue light while unaffected by red light, led to different changes in carotenoid content in response to these two treatments in Satsuma mandarin and Valencia orange. In all three varieties, increases in carotenoid content were observed with sucrose and mannitol treatments. However, the accumulation of carotenoid in the two treatments was regulated by distinct mechanisms at the transcriptional level. With abscisic acid (ABA) treatment, the expression of the genes investigated in this study was up-regulated in Satsuma mandarin and Lisbon lemon, indicating that ABA induced its own biosynthesis at the transcriptional level. This feedback regulation of ABA led to decreases in carotenoid content. With gibberellin (GA) treatment, carotenoid content was significantly decreased in the three varieties. Changes in the expression of genes related to carotenoid metabolism varied among the three varieties in response to GA treatment. These results provided insights into improving carotenoid content and composition in citrus during fruit maturation

    Subcellular Localization of Redox Enzymes involving Ascorbic Acid in Cucumber Fruits

    No full text

    Relationship of Mitochondrial Enzyme Activity to Chilling Injury of Cucumber Fruit

    No full text

    Exploring the neural underpinnings of chord prediction certainty: an electroencephalography (EEG) study

    No full text
    Predictive processing in the brain, involving interaction between interoceptive (bodily signal) and exteroceptive (sensory) processing, is essential for understanding music as it encompasses musical temporality dynamics and affective responses. This study explores the relationship between neural correlates and subjective certainty of chord prediction in both musically appropriate chord progressions and random chord sequences. Participants were asked to predict the final chord in sequences while their brain activity was measured using electroencephalography (EEG). We found that the stimulus preceding negativity (SPN), an EEG component associated with predictive processing of sensory stimuli, was larger for random chord sequences than for chord progressions. Additionally, the heartbeat evoked potential (HEP), an EEG component related to interoceptive processing, was larger for random chord sequences and correlated with prediction certainty ratings. HEP also correlated with the N5 component, found while listening to the final chord. Our results suggest that SPN may be linked to the emotional detection of chord sequences, while HEP may reflect motivational differences during the task. These findings offer new insights into the neural mechanisms underlying music perception and prediction, emphasizing the importance of considering auditory prediction certainty when examining the neural basis of music cognition

    Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs

    No full text
    NOTICE: this is the author’s version of a work that was accepted for publication in Plant Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Plant Science, Volume 233, April 2015, doi:10.1016/j.plantsci.2015.01.010autho
    corecore