2 research outputs found

    New Molecular Motif for Recognizing Sialic Acid Using Emissive Lanthanide–Macrocyclic Polyazacarboxylate Complexes: Deprotonation of a Coordinated Water Molecule Controls Specific Binding

    No full text
    A new molecular motiflanthanide–macrocyclic polyazacarboxylate hexadentate complexes, Ln<sup>3+</sup>-ABNOTAwas found to specifically bind to sialic acid with strong emission enhancement and high affinity. The selectivity toward sialic acid over other monosaccharides was one of the highest among artificial receptors. Also, the novel binding mechanism was investigated in detail; binding selectivity is controlled by interactions between sialic acid and both the central metal and a hydroxyl group produced by deprotonation of a coordinated water molecule in the Ln<sup>3+</sup> complex

    Molecular Design of Boronic Acid-Functionalized Squarylium Cyanine Dyes for Multiple Discriminant Analysis of Sialic Acid in Biological Samples: Selectivity toward Monosaccharides Controlled by Different Alkyl Side Chain Lengths

    No full text
    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (<i>H</i>-aggregates and <i>J</i>-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with <i>J</i>-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10<sup>1.7</sup> M<sup>–1</sup>), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity
    corecore