15 research outputs found

    Genome and Transcriptome Analysis of the Food-Yeast Candida utilis

    Get PDF
    The industrially important food-yeast Candida utilis is a Crabtree effect-negative yeast used to produce valuable chemicals and recombinant proteins. In the present study, we conducted whole genome sequencing and phylogenetic analysis of C. utilis, which showed that this yeast diverged long before the formation of the CUG and Saccharomyces/Kluyveromyces clades. In addition, we performed comparative genome and transcriptome analyses using next-generation sequencing, which resulted in the identification of genes important for characteristic phenotypes of C. utilis such as those involved in nitrate assimilation, in addition to the gene encoding the functional hexose transporter. We also found that an antisense transcript of the alcohol dehydrogenase gene, which in silico analysis did not predict to be a functional gene, was transcribed in the stationary-phase, suggesting a novel system of repression of ethanol production. These findings should facilitate the development of more sophisticated systems for the production of useful reagents using C. utilis

    DataSheet_1_slr2103, a homolog of type-2 diacylglycerol acyltransferase genes, for plastoquinone-related neutral lipid synthesis and NaCl-stress acclimatization in a cyanobacterium, Synechocystis sp. PCC 6803.pdf

    No full text
    A cyanobacterium, Synechocystis sp. PCC 6803, contains a lipid with triacylglycerol-like TLC mobility but its identity and physiological roles remain unknown. Here, on ESI-positive LC-MS2 analysis, it is shown that the triacylglycerol-like lipid (lipid X) is related to plastoquinone and can be grouped into two subclasses, Xa and Xb, the latter of which is esterified by 16:0 and 18:0. This study further shows that a Synechocystis homolog of type-2 diacylglycerol acyltransferase genes, slr2103, is essential for lipid X synthesis: lipid X disappears in a Synechocystis slr2103-disruptant whereas it appears in an slr2103-overexpressing transformant (OE) of Synechococcus elongatus PCC 7942 that intrinsically lacks lipid X. The slr2103 disruption causes Synechocystis cells to accumulate plastoquinone-C at an abnormally high level whereas slr2103 overexpression in Synechococcus causes the cells to almost completely lose it. It is thus deduced that slr2103 encodes a novel acyltransferase that esterifies 16:0 or 18:0 with plastoquinone-C for the synthesis of lipid Xb. Characterization of the slr2103-disruptant in Synechocystis shows that slr2103 contributes to sedimented-cell growth in a static culture, and to bloom-like structure formation and its expansion by promoting cell aggregation and floatation upon imposition of saline stress (0.3-0.6 M NaCl). These observations provide a basis for elucidation of the molecular mechanism of a novel cyanobacterial strategy to acclimatize to saline stress, and one for development of a system of seawater-utilization and economical harvesting of cyanobacterial cells with high-value added compounds, or blooming control of toxic cyanobacteria.</p

    Highly Dispersed Ni Nanoclusters Spontaneously Formed on Hydrogen Boride Sheets

    No full text
    Hydrogen boride (HB) sheets are two-dimensional materials comprising a negatively charged hexagonal boron network and positively charged hydrogen atoms with a stoichiometric ratio of 1:1. Herein, we report the spontaneous formation of highly dispersed Ni nanoclusters on HB sheets. The spontaneous reduction reaction of Ni ions by the HB sheets was monitored by in-situ measurements with an ultraviolet-visible spectrometer. Acetonitrile solutions of Ni complexes and acetonitrile dispersions of the HB sheets were mixed in several molar ratios (the HB:Ni molar ratio was varied from 100:0.5 to 100:20), and the changes in the absorbance were measured over time. In all cases, the results suggest that Ni metal clusters grow on the HB sheets, considering the increase in absorbance with time. The absorbance peak position shifts to the higher wavelength as the Ni ion concentration increases. Transmission electron microscopy images of the post-reaction products indicate the formation of Ni nanoclusters, with sizes of a few nanometers, on the HB sheets, regardless of the preparation conditions. These highly dispersed Ni nanoclusters supported on HB sheets will be used for catalytic and plasmonic applications and as hydrogen storage materials

    Whole Exome Analysis Identifies Frequent <i>CNGA1</i> Mutations in Japanese Population with Autosomal Recessive Retinitis Pigmentosa

    No full text
    <div><p>Objective</p><p>The purpose of this study was to investigate frequent disease-causing gene mutations in autosomal recessive retinitis pigmentosa (arRP) in the Japanese population.</p><p>Methods</p><p>In total, 99 Japanese patients with non-syndromic and unrelated arRP or sporadic RP (spRP) were recruited in this study and ophthalmic examinations were conducted for the diagnosis of RP. Among these patients, whole exome sequencing analysis of 30 RP patients and direct sequencing screening of all <i>CNGA1</i> exons of the other 69 RP patients were performed.</p><p>Results</p><p>Whole exome sequencing of 30 arRP/spRP patients identified disease-causing gene mutations of <i>CNGA1</i> (four patients), <i>EYS</i> (three patients) and <i>SAG</i> (one patient) in eight patients and potential disease-causing gene variants of <i>USH2A</i> (two patients), <i>EYS</i> (one patient), <i>TULP1</i> (one patient) and <i>C2orf71</i> (one patient) in five patients. Screening of an additional 69 arRP/spRP patients for the <i>CNGA1</i> gene mutation revealed one patient with a homozygous mutation.</p><p>Conclusions</p><p>This is the first identification of <i>CNGA1</i> mutations in arRP Japanese patients. The frequency of <i>CNGA1</i> gene mutation was 5.1% (5/99 patients). <i>CNGA1</i> mutations are one of the most frequent arRP-causing mutations in Japanese patients.</p></div

    Pedigrees identified with arRP-causing mutations or potential arRP-causing variants.

    No full text
    <p>The solid squares (male) and circles (female) represent affected patients. The proband of each family is indicated by a black arrow. Unaffected family members are represented by white icons. The slash symbol indicates deceased individuals. The doubled line indicates consanguineous marriage. The generation number is shown on the left.</p
    corecore