31 research outputs found

    Effective Utilization of <i>Vaccinium virgatum</i> Aiton Stems as Functional Materials: Major Constituent Analysis and Bioactivity Evaluation

    No full text
    We previously reported that rabbit-eye blueberry (Vaccinium virgatum Aiton) leaves exhibit multiple functions. In this study, we evaluated whether V. virgatum stems can also be used as functional materials similar to leaves and clarified the major constituents and their biological activity (antioxidant activity and anti–adult T cell leukemia (ATL) activity). Water extracts of V. virgatum stems were separated into 19 fractions using a Diaion HP-20 open column. Sugars and organic acids were detected in the highly water-soluble fractions. Polyphenols and proanthocyanidin were detected in the hydrous methanol-soluble fractions. In biological activity evaluations, a difference in antioxidant activity was observed in the water-containing methanol-eluted fractions, and fractions exhibiting anti-ATL activity differed depending on cell type. These results suggest that blueberry stems, like leaves, are rich in polyphenols and exhibit antioxidant activity and inhibit ATL cell growth. In the future, aerial parts of blueberries, including stems and leaves, could be used as functional materials and/or medicinal resources

    Chronic intake of high-dose of blueberry leaf extract does not augment the harmful effects of ethanol in rats

    No full text
    Excessive alcohol consumption is a risk factor for liver diseases. Enhancement of alcohol metabolism could be an effective strategy to prevent these adverse effects since it promotes the clearance of ethanol and acetaldehyde from the serum. Polyphenol-rich products have shown to protect against alcohol-related liver damage. Blueberry leaves have attracted attention as they are rich polyphenols such as proantocyanidins and chlorogenic acid. In this study, we investigated the effects of a high dose of blueberry leaf extract (BLEx) on alcohol metabolism during chronic intake of ethanol. Seven-week old Sprague-Dawley (SD) rats were divided into four groups: normal liquid diet group (NLD), normal liquid diet + BLEx group (NLD + BLEx), alcohol liquid diet group (ALD), and alcohol liquid diet + BLEx (ALD + BLEx). Then, rats were fed experimental diet for 5 weeks and at the end of feeding period, body weight, food intake, liver weight, indices of liver injury, expression and activity of alcohol metabolism-related and anti-oxidative enzymes, and levels of carbonyl protein, triglyceride (TG), and total cholesterol (T-Chol) were measured. Body weight and food intake decreased, whereas liver aldehyde dehydrogenase (ALDH) activity, liver microsomal cytochrome P450 2E1 (CYP2E1) protein and mRNA expression, and heme oxygenase 1 (HO-1) mRNA expression were upregulated by ethanol intake. Dietary BLEx, however, did not affect any of these ethanol-related changes. Indices of liver injury, expression and activity of other alcohol metabolism-related enzymes, liver carbonyl protein, TG, and T-Chol levels were not altered by ethanol and BLEx. Thus, chronic BLEx intake does not ameliorate the harmful effects of ethanol

    Prediction of the Adult T-Cell Leukemia Inhibitory Activity of Blueberry Leaves/Stems Using Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics

    No full text
    Although Vaccinium virgatum Aiton leaves and stems inhibit adult T-cell leukemia (ATL) cells, leaves and stems can differ between individual plants and by time and location. In this study, leaf and stem components were profiled in the same individual plant using direct-injection electron ionization-mass spectrometry (DI-EI-MS) metabolomics, with the aims of analyzing the anti-ATL activity, and quantifying proanthocyanidins (PACs). Leaves, stems, and leaf/stem mixtures showed distinct and characteristic spectra. Anti-ATL activity was stronger in stems than leaves, and the PAC content was higher in stems than leaves. These data were subjected to bivariate analysis to identify the factor (m/z) responsible for the inhibitory effect of ATL based on the highest coefficient of determination (R2). The results of this DI-EI-MS metabolomics analysis suggest that among PACs contained in V. virgatum stems and leaves, the fragment ion at m/z 149 contributes significantly to anti-ATL activity
    corecore