105 research outputs found
Survey on the geometric Bogomolov conjecture
This is a survey paper of the developments on the geometric Bogomolov
conjecture. We explain the recent results by the author as well as previous
works concerning the conjecture. This paper also includes an introduction to
the height theory over function fields and a quick review on basic notions on
non-archimedean analytic geometry.Comment: 57 pages. This is an expanded lecture note of a talk at
"Non-archimedean analytic Geometry: Theory and Practice" (24--28 August,
2015). It has been submitted to the conference proceedings. Appendix adde
Algebraic rank on hyperelliptic graphs and graphs of genus
Let be a vertex-weighted graph, and a
divisor class on . Let denote the combinatorial rank
of . Caporaso has introduced the algebraic rank
of , by using nodal curves
with dual graph . In this paper, when is hyperelliptic or of
genus , we show that holds, generalizing our previous result. We also show
that, with respect to the specialization map from a non-hyperelliptic curve of
genus to its reduction graph, any divisor on the graph lifts to a divisor
on the curve of the same rank.Comment: 16 page
Rank of divisors on hyperelliptic curves and graphs under specialization
Let be a hyperelliptic vertex-weighted graph of genus . We give a characterization of for which there exists a smooth
projective curve of genus over a complete discrete valuation field with
reduction graph such that the ranks of any divisors are preserved
under specialization. We explain, for a given vertex-weighted graph in general, how the existence of such relates the Riemann--Roch
formulae for and , and also how the existence of such is
related to a conjecture of Caporaso.Comment: 34 pages. The proof of Theorem 1.13 has been significantly simplifie
Transforming Popular Consciousness through the Sacralisation of the Western School:: The Meiji Schoolhouse and Tennō Worship
Im Zentrum der ideenpolitischen Bemühungen, die die japanischen Eliten der Meiji-Ära (1868– 1912) unternahmen, um das Land in modernem Gewand, doch auf traditionellen Grundlagen zur Nation zu formen, standen der Tennō-Kult und die allgemeine staatliche Pflichtschule. Zwischen der Verabschiedung der Verfassung des Kaiserlichen Japan im Jahr 1889 und dem Erlass des Kaiserlichen Erziehungs-Edikts im Jahr 1890 bestand insofern ein enger politisch-ideeller Zusammenhang. Der Artikel verfolgt die konflikthaften Auseinandersetzungen, die im letzten Drittel des 19. Jahrhunderts zwischen den Verteidigern altjapanischer Bildungstradition und den Anhängern westlicher Aufklärung, zwischen konfuzianischen Intellektuellen und westlich orientierten Demokraten, ausgetragen wurden. Er entwickelt vor diesem Hintergrund die weder selbstverständliche noch einlinige Genese der normativen Grundlagen des modernen Japan. Die Autoren beschreiben die wechselnden Inszenierungen, die in diesem Zusammenhang dem Tennō zuteil wurden: von seiner anfänglichen Rolle als öffentlich sichtbarem Symbol der Einheit der Nation (auf landesweiten Rundreisen oder Militärparaden) über den völligen Rückzug hinter die Palastmauern (in Konsequenz seiner Sakralisierung durch den erstarkenden Staats-Shintō) hin zu seiner indirekten Rückkehr in den öffentlichen Raum (in Form eines hochstilisierten und kultisch verehrten Konterfeis). Und sie schildern – unter Einbezug auch autobiographischer Reminiszenzen – sowohl die aus buddhistischer Tradition übernommene sakrale Überhöhung der modernen Schule wie die zeremoniellen Präsentationsformen des kultisch verehrten Tennō-Bildes und die von ihm ausgehenden sozialintegrativen und loyalitätsstiftenden Wirkungen
Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: The minimal dimension of a canonical measure)
In this paper, we formulate the geometric Bogomolov conjecture for abelian
varieties, and give some partial answers to it. In fact, we insist in a main
theorem that under some degeneracy condition, a closed subvariety of an abelian
variety does not have a dense subset of small points if it is a non-special
subvariety. The key of the proof is the study of the minimal dimension of the
components of a canonical measure on the tropicalization of the closed
subvariety. Then we can apply the tropical version of equidistribution theory
due to Gubler. This article includes an appendix by Walter Gubler. He shows
that the minimal dimension of the components of a canonical measure is equal to
the dimension of the abelian part of the subvariety. We can apply this result
to make a further contribution to the geometric Bogomolov conjecture.Comment: 30 page
Improving Teaching Methods, Student Learning Outcomes, and Curricula through Cross-Phase Teaching in Primary and Junior High School
In order to obtain a certain hint of forming a good cooperation between primary and junior high schools through Cross-Phase Teaching (CPT), it is necessary to verify the effect of CPT. We analyzed our CPT, surveyed the teachers and students by questionnaire, and interviewed the teachers, so that we might verify the effect of the CPT. While verifying, we not only recognized the change of the teachers' mind but also found the concrete way of improving their teaching
- …