39 research outputs found

    CORE: A Phylogenetically-Curated 16S rDNA Database of the Core Oral Microbiome

    Get PDF
    Comparing bacterial 16S rDNA sequences to GenBank and other large public databases via BLAST often provides results of little use for identification and taxonomic assignment of the organisms of interest. The human microbiome, and in particular the oral microbiome, includes many taxa, and accurate identification of sequence data is essential for studies of these communities. For this purpose, a phylogenetically curated 16S rDNA database of the core oral microbiome, CORE, was developed. The goal was to include a comprehensive and minimally redundant representation of the bacteria that regularly reside in the human oral cavity with computationally robust classification at the level of species and genus. Clades of cultivated and uncultivated taxa were formed based on sequence analyses using multiple criteria, including maximum-likelihood-based topology and bootstrap support, genetic distance, and previous naming. A number of classification inconsistencies for previously named species, especially at the level of genus, were resolved. The performance of the CORE database for identifying clinical sequences was compared to that of three publicly available databases, GenBank nr/nt, RDP and HOMD, using a set of sequencing reads that had not been used in creation of the database. CORE offered improved performance compared to other public databases for identification of human oral bacterial 16S sequences by a number of criteria. In addition, the CORE database and phylogenetic tree provide a framework for measures of community divergence, and the focused size of the database offers advantages of efficiency for BLAST searching of large datasets. The CORE database is available as a searchable interface and for download at http://microbiome.osu.edu

    Using PCR-Based Detection and Genotyping to Trace Streptococcus salivarius Meningitis Outbreak Strain to Oral Flora of Radiology Physician Assistant

    Get PDF
    We recently investigated three cases of bacterial meningitis that were reported from a midwestern radiology clinic where facemasks were not worn during spinal injection of contrast agent during myelography procedures. Using pulsed field gel electrophoresis we linked a case strain of S. salivarius to an oral specimen of a radiology physician assistant (RPA). We also used a real-time PCR assay to detect S. salivarius DNA within a culture-negative cerebrospinal fluid (CSF) specimen. Here we extend this investigation through using a nested PCR/sequencing strategy to link the culture-negative CSF specimen to the case strain. We also provide validation of the real-time PCR assay used, demonstrating that it is not solely specific for Streptococcus salivarius, but is also highly sensitive for detection of the closely related oral species Streptococcus vestibularis. Through using multilocus sequence typing and 16S rDNA sequencing we further strengthen the link between the CSF case isolate and the RPA carriage isolate. We also demonstrate that the newly characterized strains from this study are distinct from previously characterized S. salivarius strains associated with carriage and meningitis

    Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis

    Get PDF
    BACKGROUND: Bacterial vaginosis (BV) is a polymicrobial syndrome characterized by a change in vaginal flora away from predominantly Lactobacillus species. The cause of BV is unknown, but the condition has been implicated in diverse medical outcomes. The bacterium Atopobium vaginae has been recognized only recently. It is not readily identified by commercial diagnostic kits. Its clinical significance is unknown but it has recently been isolated from a tuboovarian abcess. METHODS: Nucleotide sequencing of PCR amplified 16S rRNA gene segments, that were separated into bands within lanes on polyacrylamide gels by denaturing gradient gel electrophoresis (DGGE), was used to examine bacterial vaginal flora in 46 patients clinically described as having normal (Lactobacillus spp. predominant; Nugent score ≤ 3) and abnormal flora (Nugent score ≥ 4). These women ranged in age from 14 to 48 and 82% were African American. RESULTS: The DGGE banding patterns of normal and BV-positive patients were recognizably distinct. Those of normal patients contained 1 to 4 bands that were focused in the centre region of the gel lane, while those of BV positive patients contained bands that were not all focused in the center region of the gel lane. More detailed analysis of patterns revealed that bands identified as Atopobium vaginae were present in a majority (12/22) of BV positive patients, while corresponding bands were rare (2/24) in normal patients. (P < 0.001) Two A. vaginae isolates were cultivated from two patients whose DGGE analyses indicated the presence of this organism. Two A. vaginae 16S rRNA gene sequences were identified among the clinical isolates. The same two sequences were obtained from DGGE bands of the corresponding vaginal flora. The sequences differed by one nucleotide over the short (~300 bp) segment used for DGGE analysis and migrated to slightly different points in denaturing gradient gels. Both isolates were strict anaerobes and highly metronidazole resistant. CONCLUSION: The results suggest that A. vaginae may be an important component of the complex bacterial ecology that constitutes abnormal vaginal flora. This organism could play a role in treatment failure if further studies confirm it is consistently metronidozole resistant

    Identification of Rothia Bacteria as Gluten-Degrading Natural Colonizers of the Upper Gastro-Intestinal Tract

    Get PDF
    Gluten proteins, prominent constituents of barley, wheat and rye, cause celiac disease in genetically predisposed subjects. Gluten is notoriously difficult to digest by mammalian proteolytic enzymes and the protease-resistant domains contain multiple immunogenic epitopes. The aim of this study was to identify novel sources of gluten-digesting microbial enzymes from the upper gastro-intestinal tract with the potential to neutralize gluten epitopes.Oral microorganisms with gluten-degrading capacity were obtained by a selective plating strategy using gluten agar. Microbial speciations were carried out by 16S rDNA gene sequencing. Enzyme activities were assessed using gliadin-derived enzymatic substrates, gliadins in solution, gliadin zymography, and 33-mer α-gliadin and 26-mer γ-gliadin immunogenic peptides. Fragments of the gliadin peptides were separated by RP-HPLC and structurally characterized by mass spectrometry. Strains with high activity towards gluten were typed as Rothia mucilaginosa and Rothia aeria. Gliadins (250 µg/ml) added to Rothia cell suspensions (OD(620) 1.2) were degraded by 50% after ∼30 min of incubation. Importantly, the 33-mer and 26-mer immunogenic peptides were also cleaved, primarily C-terminal to Xaa-Pro-Gln (XPQ) and Xaa-Pro-Tyr (XPY). The major gliadin-degrading enzymes produced by the Rothia strains were ∼70-75 kDa in size, and the enzyme expressed by Rothia aeria was active over a wide pH range (pH 3-10).While the human digestive enzyme system lacks the capacity to cleave immunogenic gluten, such activities are naturally present in the oral microbial enzyme repertoire. The identified bacteria may be exploited for physiologic degradation of harmful gluten peptides

    NOMA: A Preventable “Scourge” of African Children

    Get PDF
    Noma is a serious orofacial gangrene originating intraorally in the gingival-oral mucosa complex before spreading extraorally to produce a visibly destructive ulcer. Although cases of noma are now rarely reported in the developed countries, it is still prevalent among children in third world countries, notably in sub-Sahara Africa, where poverty, ignorance, malnutrition, and preventable childhood infections are still common. This review summarizes historical, epidemiological, management, and research updates on noma with suggestions for its prevention and ultimate global eradication. The global annual incidence remains high at about 140,000 cases, with a mortality rate exceeding 90% for untreated diseases. Where the patients survive, noma defects result in unsightly facial disfigurement, intense scarring, trismus, oral incompetence, and social alienation. Although the etiology has long been held to be infectious, a definitive causal role between microorganisms cited, and noma has been difficult to establish. The management of noma with active disease requires antibiotics followed by reconstructive surgery. Current research efforts are focused towards a comprehensive understanding of the epidemiology, and further elucidation of the microbiology and pathogenesis of noma

    Pyrosequencing as a tool for better understanding of human microbiomes

    Get PDF
    Next-generation sequencing technologies have revolutionized the analysis of microbial communities in diverse environments, including the human body. This article reviews several aspects of one of these technologies, the pyrosequencing technique, including its principles, applications, and significant contribution to the study of the human microbiome, with especial emphasis on the oral microbiome. The results brought about by pyrosequencing studies have significantly contributed to refining and augmenting the knowledge of the community membership and structure in and on the human body in healthy and diseased conditions. Because most oral infectious diseases are currently regarded as biofilm-related polymicrobial infections, high-throughput sequencing technologies have the potential to disclose specific patterns related to health or disease. Further advances in technology hold the perspective to have important implications in terms of accurate diagnosis and more effective preventive and therapeutic measures for common oral diseases

    Prospects for the development of probiotics and prebiotics for oral applications

    Get PDF
    There has been a paradigm shift towards an ecological and microbial community-based approach to understanding oral diseases. This has significant implications for approaches to therapy and has raised the possibility of developing novel strategies through manipulation of the resident oral microbiota and modulation of host immune responses. The increased popularity of using probiotic bacteria and/or prebiotic supplements to improve gastrointestinal health has prompted interest in the utility of this approach for oral applications. Evidence now suggests that probiotics may function not only by direct inhibition of, or enhanced competition with, pathogenic micro-organisms, but also by more subtle mechanisms including modulation of the mucosal immune system. Similarly, prebiotics could promote the growth of beneficial micro-organisms that comprise part of the resident microbiota. The evidence for the use of pro or prebiotics for the prevention of caries or periodontal diseases is reviewed, and issues that could arise from their use, as well as questions that still need to be answered, are raised. A complete understanding of the broad ecological changes induced in the mouth by probiotics or prebiotics will be essential to assess their long-term consequences for oral health and disease
    corecore