21 research outputs found

    Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence

    Get PDF
    Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures

    Lobe-specific increases in malondialdehyde DNA adduct formation in the livers of mice following infection with Helicobacter hepaticus

    No full text
    Helicobacter hepaticus infection is associated with chronic hepatitis and the development of liver tumours in mice. The underlying mechanism of this liver carcinogenesis is not clear but the oxidative stress associated with H. hepaticus infection may result in induction of lipid peroxidation and the generation of malondialdehyde. Malondialdehyde can react with deoxyguanosine in DNA resulting in the formation of the cyclic pyrimidopurinone N-1,N-2 malondialdehyde-deoxyguanosine (M(1)dG) adduct. This adduct has the potential to cause mutations that may ultimately lead to liver carcinogenesis. The objective of this study was to determine the control and infection-related levels of M(1)dG in the liver DNA of mice over time, using an immunoslot-blot procedure. The level of M(1)dG in control A/J mouse livers at 3, 6, 9 and 12 months averaged 37.5, 36.6, 24.8 and 30.1 adducts per 10(8) nucleotides, respectively. Higher levels of M(1)dG were detected in the liver DNA of H. hepaticus infected A/JCr mice, with levels averaging 40.7, 47.0, 42.5 and 52.5 adducts per 10(8) nucleotides at 3, 6, 9 and 12 months, respectively. There was a significant age dependent increase in the level of M(1)dG in the caudate and median lobes of the A/JCr mice relative to control mice. A lobe specific distribution of the M(1)dG adduct in both infected and control mice was noted, with the left lobe showing the lowest level of the adduct compared with the right and median lobes at all time points. In a separate series of mice experimentally infected with H. hepaticus, levels of 8-hydroxy-deoxyguanosine were significantly greater in the median compared with the left lobe at 12 weeks after treatment. In conclusion, these results suggest that M(1)dG occurs as a result of oxidative stress associated with H. hepaticus infection of mice, and may contribute to liver carcinogenesis in this model
    corecore