5 research outputs found

    Power stability of different lasers and its effect on the outcome of phase-stepping shearography experiments

    No full text
    We examined the effect and influence of power stability of different commonly used lasers on the outcome of phase-stepping shearographic experiments. We performed power stability measurements with three different lasers (helium–neon laser, red diode laser and green frequency-doubled neodymium laser). We subsequently performed phase-stepping shearography experiments using these lasers as light sources. We found a correlation with the quality of the shearograms and the power stability of the lasers. This enables us to compare the suitability of various lasers for phase-stepping shearography experiments and to choose the best laser for this application

    High Spatial-Resolution Digital Phase-Stepping Shearography

    No full text
    Digital phase-stepping shearography is a speckle interferometric technique that uses laser speckles to generate the phase map of the displacement derivatives of a stressed object, and hence can map the stresses of a deformed object directly. Conventional digital phase-stepping shearography relies on the use of video cameras of relatively lower resolution, in the order of 5 megapixels or lower, operating at a video rate. In the present work, we propose a novel method of performing high spatial resolution phase stepping shearography. This method uses a 24 megapixel still digital imaging device (DSLR camera) and a Michelson-type shearing arrangement with an edge-clamped, center-loaded plate. Different phase-stepping algorithms were used, and all successfully generated shearograms. The system enabled extremely high-resolution phase maps to be generated from relatively large deformations applied to the test plate. Quantitative comparison of the maximum achieved spatial resolution is made with the video-rate cameras used in conventional shearography. By switching from conventional (video) imaging methods to still imaging methods, significantly higher spatial resolution (by about 5 times) can be achieved in actual phase-stepping shearography, which is of great usefulness in industrial non-destructive testing (NDT)

    Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Get PDF
    A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.). The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent). We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103

    Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    No full text
    A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.). The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent). We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm −1 , which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 10 3
    corecore