3 research outputs found

    Development of a Centrifugal Technique for the Microbial Bioburden Analysis of Freon (CFC-11)

    Get PDF
    NASA Procedural Requirement 8020.12C entitled "Planetary Protection Provisions for Robotic Extraterrestrial Missions" states that the source-specific encapsulated microbial density for encapsulated organisms (div(0)) in nonmetallic materials ranges from 1-30 spores/cubic cm. The standard laboratory procedure, NASA Standard Procedures for the Microbial Examination of Space Hardware, NHB 5340.1B, does not provide any direction into the methodologies to understand the bioburden within such a fluid as CFC-11 (Freon). This general specification value for the Freon would be applicable to the Freon charged within the Mars Science Laboratory fs (MSL fs) Heat Rejection System. Due to the large volume required to fill this system, MSL could not afford to conservatively allocate 55.8% of the total spore budget of the entire laboratory system (rover, descent stage, cruise stage, and aeroshell) of 5.00 X 10(exp 5) spores at launch. A novel filtration approach was developed to analyze the Freon employing a 50 kDa molecular weight cutoff (MCO) filter, followed by 0.22-micron pore-size filter to establish a calculated microbial bioburden

    Employing a Grinding Technology to Assess the Microbial Density for Encapsulated Organisms

    Get PDF
    Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as the most conservative value of 30 spores/cubic cm is typically used. The standard laboratory procedures do not provide any direction into the methodologies to understand the embedded bioburden within such nonmetallic components such as adhesives, insulation, or paint. A tailored, novel, destructive hardware technology employing a household box grater was developed to assess the embedded bioburden within the adhesives, insulation, and paint for the Mars Science Laboratory (MSL) project

    Using a Blender to Assess the Microbial Density of Encapsulated Organisms

    Get PDF
    There are specific NASA requirements for source-specific encapsulated microbial density for encapsulated organisms in non-metallic materials. Projects such as the Mars Science Laboratory (MSL) that use large volumes of non-metallic materials of planetary protection concern pose a challenge to their bioburden budget. An optimized and adapted destructive hardware technology employing a commercial blender was developed to assess the embedded bioburden of thermal paint for the MSL project. The main objective of this optimization was to blend the painted foil pieces in the smallest sizes possible without excessive heating. The small size increased the surface area of the paint and enabled the release of the maximum number of encapsulated microbes. During a trial run, a piece of foil was placed into a blender for 10 minutes. The outside of the blender was very hot to the touch. Thus, the grinding was reduced to five 2-minute periods with 2-minute cooling periods between cycles. However, almost 20% of the foil fraction was larger (>2 mm). Thus, the largest fractions were then put into the blender and reground, resulting in a 71% increase in particles less than 1 mm in size, and a 76% decrease in particles greater than 2 mm in size. Because a repeatable process had been developed, a painted sample was processed with over 80% of the particles being <2 mm. It was not perceived that the properties (i.e. weight and rubber-like nature) of the painted/foil pieces would allow for a finer size distribution. With these constraints, each section would be ground for a total of 10 minutes with five cycles of a 2-minute pulse followed by a 2-minute pause. It was observed on several occasions that a larger blade affected the recovery of seeded spores by approximately half an order of magnitude. In the standard approach, each piece of painted foil was aseptically removed from the bag and placed onto a sterile tray where they were sized, cut, and cleaned. Each section was then weighed and placed into a sterile Waring Laboratory Blender. Samples were processed on low speed. The ground-up samples were then transferred to a 500-mL bottle using a sterile 1-in. (.2.5-cm) trim brush. To each of the bottles sterile planetary protection rinse solution was added and a modified NASA Standard Assay (NASA HBK 6022) was performed. Both vegetative and spore plates were analyzed
    corecore