13 research outputs found

    Role Of Retroelements In The Development Of COVID-19 Neurological Consequences

    Get PDF
    Retroelements play a key role in brain functioning in humans and other animals, since they represent dynamic regulatory elements controlling the expression of specific neuron types. The activity of retroelements in the brain is impaired under the influence of SARS-CoV-2, penetrating the blood-brain barrier. We propose a new concept, according to which the neurological complications of COVID-19 and their long-term effects are caused by modified expression of retroelements in neurons due to viral effect. This effect is implemented in several ways: a direct effect of the virus on the promoter regions of retroelement-encoding genes, virus interaction with miRNAs causing silencing of transposons, and an effect of the viral RNA on the products of retroelement transcription. Aging-related physiological activation of retroelements in the elderly is responsible for more severe course of COVID-19. The associations of multiple sclerosis, Parkinson’s disease, Guillain-Barré syndrome, acute disseminated encephalomyelitis with coronavirus lesions also indicate the role of retroelements in such complications, because retroelements are involved in the mechanisms of the development of these diseases. According to meta-analyses, COVID-19-caused neurological complications ranged 36.4-73%. The neuropsychiatric consequences of COVID-19 are observed in patients over a long period after recovery, and their prevalence may exceed those during the acute phase of the disease. Even 12 months after recovery, unmotivated fatigue, headache, mental disorders, and neurocognitive impairment were observed in 82%, 60%, 26.2-45%, and 16.2-46.8% of patients, correspondingly. These manifestations are explained by the role of retroelements in the integration of SARS-CoV-2 into the human genome using their reverse transcriptase and endonuclease, which results in a long-term viral persistence. The research on the role of specific retroelements in these changes can become the basis for developing targeted therapy for neurological consequences of COVID-19 using miRNAs, since epigenetic changes in the functioning of the genome in neurons, affected by transposons, are reversible

    BSXplorer: analytical framework for exploratory analysis of BS-seq data

    No full text
    Abstract Background Bisulfite sequencing detects and quantifies DNA methylation patterns, contributing to our understanding of gene expression regulation, genome stability maintenance, conservation of epigenetic mechanisms across divergent taxa, epigenetic inheritance and, eventually, phenotypic variation. Graphical representation of methylation data is crucial in exploring epigenetic regulation on a genome-wide scale in both plants and animals. This is especially relevant for non-model organisms with poorly annotated genomes and/or organisms where genome sequences are not yet assembled on chromosome level. Despite being a technology of choice to profile DNA methylation for many years now there are surprisingly few lightweight and robust standalone tools available for efficient graphical analysis of data in non-model systems. This significantly limits evolutionary studies and agrigenomics research. BSXplorer is a tool specifically developed to fill this gap and assist researchers in explorative data analysis and in visualising and interpreting bisulfite sequencing data more easily. Results BSXplorer provides in-depth graphical analysis of sequencing data encompassing (a) profiling of methylation levels in metagenes or in user-defined regions using line plots and heatmaps, generation of summary statistics charts, (b) enabling comparative analyses of methylation patterns across experimental samples, methylation contexts and species, and (c) identification of modules sharing similar methylation signatures at functional genomic elements. The tool processes methylation data quickly and offers API and CLI capabilities, along with the ability to create high-quality figures suitable for publication. Conclusions BSXplorer facilitates efficient methylation data mining, contrasting and visualization, making it an easy-to-use package that is highly useful for epigenetic research

    Host Genetic Variants Linked to COVID-19 Neurological Complications and Susceptibility in Young Adults—A Preliminary Analysis

    No full text
    To date, multiple efforts have been made to use genome-wide association studies (GWAS) to untangle the genetic basis for SARS-CoV-2 infection susceptibility and severe COVID-19. However, data on the genetic-related effects of SARS-CoV-2 infection on the presence of accompanying and long-term post-COVID-19 neurological symptoms in younger individuals remain absent. We aimed to examine the possible association between SNPs found in a GWAS of COVID-19 outcomes and three phenotypes: SARS-CoV-2 infection, neurological complications during disease progression, and long-term neurological complications in young adults with a mild-to-moderate disease course. University students (N = 336, age 18–25 years, European ancestry) with or without COVID-19 and neurological symptoms in anamnesis comprised the study sample. Logistic regression was performed with COVID-19-related phenotypes as outcomes, and the top 25 SNPs from GWAS meta-analyses and an MR study linking COVID-19 and cognitive deficits were found. We replicated previously reported associations of the FURIN and SLC6A20 gene variants (OR = 2.36, 95% CI 1.31–4.24) and OR = 1.94, 95% CI 1.08–3.49, respectively) and remaining neurological complications (OR = 2.12, 95% CI 1.10–4.35 for SLC6A20), while NR1H2 (OR = 2.99, 95% CI 1.39–6.69) and TMPRSS2 (OR = 2.03, 95% CI 1.19–3.50) SNPs were associated with neurological symptoms accompanying COVID-19. Our findings indicate that genetic variants related to a severe COVID-19 course in adults may contribute to the occurrence of neurological repercussions in individuals at a young age

    Îş-Carrageenan Hydrogel as a Matrix for Therapeutic Enzyme Immobilization

    No full text
    During the last few decades, polysaccharide hydrogels attract more and more attention as therapeutic protein delivery systems due to their biocompatibility and the simplicity of the biodegradation of natural polymers. The protein retention by and release from the polysaccharide gel network is regulated by geometry and physical interactions of protein with the matrix. In the present work, we studied the molecular details of interactions between κ-carrageenan and three lipases, namely the lipases from Candida rugosa, Mucor javanicus, and Rhizomucor miehei—which differ in their size and net charge—upon protein immobilization in microparticles of polysaccharide gel. The kinetics of protein release revealed the different capability of κ-carrageenan to retain lipases, which are generally negatively charged; that was shown to be in line with the energy of interactions between polysaccharides and positively charged epitopes on the protein surface. These data create a platform for the novel design of nanocarriers for biomedical probes of enzymatic origin
    corecore