290 research outputs found

    Twisted Nanotubes of Transition Metal Dichalcogenides with Split Optical Modes for Tunable Radiated Light Resonators

    Full text link
    Synthesized micro- and nanotubes composed of transition metal dichalcogenides (TMDCs) such as MoS2_2 are promising for many applications in nanophotonics, because they combine the abilities to emit strong exciton luminescence and to act as whispering gallery microcavities even at room temperature. In addition to tubes in the form of hollow cylinders, there is an insufficiently-studied class of twisted tubes, the flattened cross section of which rotates along the tube axis. As shown by theoretical analysis, in such nanotubes the interaction of electromagnetic waves excited at opposite sides of the cross section can cause splitting of the whispering gallery modes. By studying micro-photoluminescence spectra measured along individual MoS2_2 tubes, it has been established that the splitting value, which controls the energies of the split modes, depends exponentially on the aspect ratio of the cross section, which varies in "breathing" tubes, while the relative intensity of the modes in a pair is determined by the angle of rotation of the cross section. These results open up the possibility of creating multifunctional tubular TMDC nanodevices that provide resonant amplification of self-emitting light at adjustable frequencies

    Cl Anion-Dependent Mg-ATPase

    Get PDF
    We studied, in the rat brain, the synaptosomal and microsomal membrane fractions of Cl− ion-activated, Mg2+-dependent ATPase, satisfying the necessary kinetic peculiarities of transport ATPases, by a novel method of kinetic analysis of the multisite enzyme systems: (1) the [Mg-ATP] complex constitutes the substrate of the enzymic reaction; (2) the V = f(Cl−) dependence-reflecting curve is bell-shaped; (3) substrate dependence, V = f(S), curves at a constant concentration of free ligands (Mgf, ATPf, Cl−); (4) as known from the literature, in the process of reaction a phosphorylated intermediate is formed (Gerencser, Crit Rev Biochem Mol Biol 31:303–337, 1996). We report on the Cl-ATPase molecular mechanism and its place in the “P-type ATPase” classification
    • 

    corecore