48 research outputs found

    Prominences in SDO/EVE spectra: contributions from large solar structures

    Get PDF
    The EVE instrument on SDO is making accurate measurements of the solar spectral irradiance in the EUV between 30 and 1069 Å, with 1 Å spectral resolution and 10 s sampling rate. These data define solar variability in the “Sun-as-a-star” mode and reveal many interesting kinds of variation. Its high sensitivity also makes it suitable for spectroscopic diagnostics of solar features such as flares. Here we present EVE's potential contribution to the diagnostics of large-scale, slowly evolving features such as prominences and active regions, and what we can learn from this

    A Comprehensive Method of Estimating Electric Fields from Vector Magnetic Field and Doppler Measurements

    Full text link
    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal (PTD) decomposition of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the "{\bf P}TD-{\bf D}oppler-{\bf F}LCT {\bf I}deal" (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the \texttt{FISHPACK} software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (\texttt{ANMHD}) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 11% error in the total Poynting flux and a 1010% error in the helicity flux rate at a normal viewing angle (θ=0(\theta=0) and less than 2525% and 1010% errors respectively at large viewing angles (θ<60\theta<60^\circ). We compare our results with other inversion methods at zero viewing angle, and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.Comment: 56 pages, 10 figures, ApJ (in press

    Photospheric Electric Fields and Energy Fluxes in the Eruptive Active Region NOAA 11158

    Full text link
    How much electromagnetic energy crosses the photosphere in evolving solar active regions? With the advent of high-cadence vector magnetic field observations, addressing this fundamental question has become tractable. In this paper, we apply the "PTD-Doppler-FLCT-Ideal" (PDFI) electric field inversion technique of Kazachenko et al. (2014) to a 6-day HMI/SDO vector magnetogram and Doppler velocity sequence, to find the electric field and Poynting flux evolution in active region NOAA 11158, which produced an X2.2 flare early on 2011 February 15. We find photospheric electric fields ranging up to 22 V/cm. The Poynting fluxes range from [0.6[-0.6 to 2.3]×10102.3]\times10^{10} ergs\cdotcm2^{-2}s1^{-1}, mostly positive, with the largest contribution to the energy budget in the range of [109[10^9-1010]10^{10}] ergs\cdotcm2^{-2}s1^{-1}. Integrating the instantaneous energy flux over space and time, we find that the total magnetic energy accumulated above the photosphere from the initial emergence to the moment before the X2.2 flare to be E=10.6×1032E=10.6\times10^{32} ergs, which is partitioned as 2.02.0 and 8.6×10328.6\times10^{32} ergs, respectively, between free and potential energies. Those estimates are consistent with estimates from preflare non-linear force-free field (NLFFF) extrapolations and the Minimum Current Corona estimates (MCC), in spite of our very different approach. This study of photospheric electric fields demonstrates the potential of the PDFI approach for estimating Poynting fluxes and opens the door to more quantitative studies of the solar photosphere and more realistic data-driven simulations of coronal magnetic field evolution.Comment: 51 pages, 10 figures, accepted by ApJ on August 11, 201

    Solar Atmospheric Heating Due to Small-scale Events in an Emerging Flux Region

    Full text link
    We investigate the thermal, kinematic and magnetic structure of small-scale heating events in an emerging flux region (EFR). We use high-resolution multi-line observations (including Ca II 8542~\AA, Ca II K, and Fe I 6301~\AA line pair) of an EFR located close to the disk center from the CRISP and CHROMIS instruments at the Swedish 1-m Solar Telescope. We perform non-LTE inversions of multiple spectral lines to infer the temperature, velocity, and magnetic field structure of the heating events. Additionally, we use the data-driven Coronal Global Evolutionary Model to simulate the evolution of the 3D magnetic field configuration above the events and understand their dynamics. Furthermore, we analyze the differential emission measure to gain insights into the heating of the coronal plasma in the EFR. Our analysis reveals the presence of numerous small-scale heating events in the EFR, primarily located at polarity inversion lines of bipolar structures. These events not only heat the lower atmosphere but also significantly heat the corona. The data-driven simulations, along with the observed enhancement of currents and Poynting flux, suggest that magnetic reconnection in the lower atmosphere is likely responsible for the observed heating at these sites.Comment: 20 pages, 15 figures, accepted for publication in the Ap

    Modeling a Coronal Mass Ejection from an Extended Filament Channel. I. Eruption and Early Evolution

    Get PDF
    We present observations and modeling of the magnetic field configuration, morphology, and dynamics of a large-scale, high-latitude filament eruption observed by the Solar Dynamics Observatory. We analyze the 2015 July 9-10 filament eruption and the evolution of the resulting coronal mass ejection (CME) through the solar corona. The slow streamer-blowout CME leaves behind an elongated post-eruption arcade above the extended polarity inversion line that is only poorly visible in extreme ultraviolet (EUV) disk observations and does not resemble a typical bright flare-loop system. Magnetohydrodynamic (MHD) simulation results from our data-inspired modeling of this eruption compare favorably with the EUV and white-light coronagraph observations. We estimate the reconnection flux from the simulation's flare-arcade growth and examine the magnetic-field orientation and evolution of the erupting prominence, highlighting the transition from an erupting sheared-arcade filament channel into a streamer-blowout flux-rope CME. Our results represent the first numerical modeling of a global-scale filament eruption where multiple ambiguous and complex observational signatures in EUV and white light can be fully understood and explained with the MHD simulation. In this context, our findings also suggest that the so-called stealth CME classification, as a driver of unexpected or "problem" geomagnetic storms, belongs more to a continuum of observable/nonobservable signatures than to separate or distinct eruption processes.Peer reviewe
    corecore