16 research outputs found

    The transcriptional landscape of endogenous retroelements delineates esophageal adenocarcinoma subtypes

    Get PDF
    Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.</p

    Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution

    Get PDF
    Noncoding regulatory variants play a central role in the genetics of human diseases and in evolution. Here we measure allele-specific transcription factor binding occupancy of three liver-specific transcription factors between crosses of two inbred mouse strains to elucidate the regulatory mechanisms underlying transcription factor binding variations in mammals. Our results highlight the pre-eminence of cis-acting variants on transcription factor occupancy divergence. Transcription factor binding differences linked to cis-acting variants generally exhibit additive inheritance, while those linked to trans-acting variants are most often dominantly inherited. Cis-acting variants lead to local coordination of transcription factor occupancies that decay with distance; distal coordination is also observed and may be modulated by long-range chromatin contacts. Our results reveal the regulatory mechanisms that interplay to drive transcription factor occupancy, chromatin state, and gene expression in complex mammalian cell states.We thank the CRUK—CI Genomics, BRU, and Bioinformatics Cores for technical assistance and the EMBL-EBI systems team for management of computational resources. This research was supported by the European Molecular Biology Laboratory (E.S.W., D.T., J.C.M., P.F.), Cancer Research UK (B.M.S., T.F.R., F.C., C.F., A.R., D.T.O.), the BOLD ITN (B.M.S.), Darwin Fellowship (A.K.), the Wellcome Trust (WT202878/B/16/Z, WT108749/Z/15/Z) (P.F.), (WT202878/A/16/Z) (D.T.O), (WT095606) (A.C.F.-S) and (WT098051) (P.F., D.T.O.), EMBO Long-term (ALTF1518-2012) and Advanced Fellowships (aALTF1672-2014) (E.S.W.), and by the European Research Council (award 615584) and EMBO Young Investigator Programme (D.T.O.)

    ZFP57 regulation of transposable elements and gene expression within and beyond imprinted domains

    No full text
    Background: KRAB zinc finger proteins (KZFPs) represent one of the largest families of DNA-binding proteins in vertebrate genomes and appear to have evolved to silence transposable elements (TEs) including endogenous retroviruses through sequence-specific targeting of repressive chromatin states. ZFP57 is required to maintain the post-fertilization DNA methylation memory of parental origin at genomic imprints. Here we conduct RNA-seq and ChIP-seq analyses in normal and ZFP57 mutant mouse ES cells to understand the relative importance of ZFP57 at imprints, unique and repetitive regions of the genome. Results: Over 80% of ZFP57 targets are TEs, however, ZFP57 is not essential for their repression. The remaining targets lie within unique imprinted and non-imprinted sequences. Though the loss of ZFP57 influences imprinted genes as expected, the majority of unique gene targets lose H3K9me3 with little effect on DNA methylation and very few exhibit alterations in expression. Comparison of ZFP57 mutants with DNA methyltransferase-deleted ES cells (TKO) identifies a remarkably similar pattern of H3K9me3 loss across the genome. These data define regions where H3K9me3 is secondary to DNA methylation and we propose that ZFP57 is the principal if not sole methylation-sensitive KZFP in mouse ES cells. Finally, we examine dynamics of DNA and H3K9 methylation during pre-implantation development and show that sites bound by ZFP57 in ES cells maintain DNA methylation and H3K9me3 at imprints and at non-imprinted regions on the maternally inherited chromosome throughout preimplantation development. Conclusion: Our analyses suggest the evolution of a rare DNA methylation-sensitive KZFP that is not essential for repeat silencing, but whose primary function is to maintain DNA methylation and repressive histone marks at germline-derived imprinting control regions.Medicine, Faculty ofNon UBCMedical Genetics, Department ofReviewedFacult
    corecore