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evolution
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Noncoding regulatory variants play a central role in the genetics of human diseases and in

evolution. Here we measure allele-specific transcription factor binding occupancy of three

liver-specific transcription factors between crosses of two inbred mouse strains to elucidate

the regulatory mechanisms underlying transcription factor binding variations in mammals.

Our results highlight the pre-eminence of cis-acting variants on transcription factor

occupancy divergence. Transcription factor binding differences linked to cis-acting variants

generally exhibit additive inheritance, while those linked to trans-acting variants are most

often dominantly inherited. Cis-acting variants lead to local coordination of transcription

factor occupancies that decay with distance; distal coordination is also observed and may be

modulated by long-range chromatin contacts. Our results reveal the regulatory mechanisms

that interplay to drive transcription factor occupancy, chromatin state, and gene expression in

complex mammalian cell states.
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Understanding how genetic variation propagates into
differences in complex traits and disease susceptibility is a
major challenge. Evolutionary studies have revealed

examples of regulatory variants linked to different organismal
phenotypes1. Genome-wide studies have also found that many
common disease-associated genetic variants lie in regulatory
sequences2–4 with genetic changes at local regulatory elements

leading to coordinated chromatin changes within constrained
genomic domains5, 6.

A key determinant of transcriptional activation and spatio-
temporal specificity is the affinity with which collections of tran-
scription factors (TFs) bind to gene regulatory regions7–9. How TF
binding specificity and strength is shaped by cis- and trans-acting
variation remains poorly understood10, and understanding the
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Fig. 1 F1 mice were used to interrogate the regulation of TFBS variation. a In vivo binding of liver-specific TFs FOXA1, HNF4A, and CEBPA were profiled in
the livers of male mice from inbred strains C57BL/6J (BL6), CAST/EiJ (CAST), and their F1 crosses: C57BL/6J × CAST/EiJ (BL6xCAST) and CAST/EiJ ×
C57BL/6J (CASTxBL6). Six biological replicates were generated for each TF and genetic background combination. b The number of TFBS that could be
classified with associated number of SNVs. c Venn diagram illustrates the numbers of classifiable SNVs that overlap between TFs. Each variant is at least
250 bp from any other SNV. Numbers shown are the final numbers of regulatory loci used for downstream analyses. d Heatmap confirming overall
accuracy of regulatory class assignments. BL6 (black) vs. CAST (brown) binding intensity ratios for different regulatory categories for CEBPA. A subset of
variants from each class was randomly sampled to match the overall distribution. Sparkline in key shows the number of observations at each color
category, where density is increasing from left to right
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interplay between TF binding and the surrounding chromatin
state is critical for determining phenotypic diversity.

Cis-acting sequence changes substantially modulate TF
occupancy11, 12, but direct disruption of TF–DNA binding motifs
is relatively rare13–19. This seemingly conflicting observation may
be potentially explained by changes to surrounding chromatin
state, long-range TF-TF connectivity6, or cis-acting binding
determinants near but outside the core binding motif20.

Strategies used to dissect cis- and trans-acting mechanisms
include quantitative trait loci (QTL)-based analyses and F1
crosses of genetically inbred organisms. QTL analysis correlates a
measured molecular trait, such as gene expression or TF binding
intensity with genetic variation. However, fully distinguishing
between regulatory divergence in cis and in trans in expression
quantitative trait loci (eQTL) and chromatin immunoprecipita-
tion quantitative trait loci (ChIP-QTL) studies21 requires large
numbers of genetically diverse samples to achieve statistical
power22–25. In addition, trans effects are extremely difficult to
identify and then validate26, 27.

Alternatively, regulatory mechanisms can be revealed by
analysis of the patterns of divergence occurring in F1 genetic
hybrids; this approach has been widely used to analyze gene
expression in yeast28, 29, maize30, fruit flies31–33, and mouse34, 35.
By placing two alleles in a shared trans environment and
comparing their allelic occupancy, the relative cis and trans
contributions to a measured molecular trait can be evaluated36.
Any variance from the occupancy observed in the parent F0 mice
can be assigned to the influence of trans-acting variation.
Like QTL-based approaches, analysis of F1 data results in a
probabilistic description of the role of cis and trans effects.
However, the use of F1 crosses classifies mechanisms underlying
regulatory changes as either cis- or trans-acting more accurately
than eQTL approaches, because the functional differences in vivo
between the two alleles are directly evaluated in F1 mice36, rather
than distance restricted searching between causative variants and
TF occupancy differences as is common in eQTL approaches and
which make distant eQTLs impossible to discover37. Formally,
this system analyzes the correlation between specific variants and
observed functional effects, i.e., the effect of a variant on either
cis- or trans regulation. Although it is generally not possible to
unambiguously assign causality from a specific variant to a
functional effect, for simplicity in this study we will use the term
“regulatory mechanism” to refer to this connection.

Here we employ F1 hybrids to comprehensively dissect TF
binding differences in mammals. We created first-generation
genetic hybrids from divergent mouse subspecies to dissect trans-
acting mechanisms that affect both chromosomes equally due to a
shared nuclear environment, from the allele-specific differences
caused by cis-directed mechanisms32, 33, 38, 39. We leveraged this
strategy to interrogate the inheritance of TF binding
occupancy40, 41. We find that changes to TF binding occupancy is
predominately mediated by variation that acts in cis, and is thus
additively inherited. In addition, cis-acting variation is able to
influence multiple transcription factor binding sites (TFBS).
Finally, we observe coordination in the regulatory mechanisms
between TF binding occupancy, chromatin state, and gene
expression by incorporating matched transcriptomic data from
RNA-seq35. Our results provide a comprehensive and quantita-
tive overview of how different layers of regulatory variation create
tissue-specific transcriptional regulation.

Results
Transcription factor binding in mouse reciprocal crosses. In
order to dissect the extent of cis and trans variation in TF
occupancy variation, TFBS occupancy was mapped with six

biological replicates using chromatin immunoprecipitation
followed by sequencing (ChIP-seq) against three liver
TFs (HNF4A, FOXA1, CEBPA) in inbred mouse subspecies
C57BL/6J (BL6) and CAST/EiJ (CAST) and their F1 crosses
(BL6xCAST and CASTxBL6) (Fig. 1a; Supplementary Figs. 1–3;
Supplementary Tables 1, 2; “Methods”); all data are in
ArrayExpress (E-MTAB-4089). The large number (~19M) of
single-nucleotide variants (SNVs) between two parental strains,
which are estimated to have <1 million years divergence42, is
comparable to that found in human populations43, and permits
a substantial proportion of allele-specific TF binding to be
measured.

Approximately 60–70,000 regions in the genome are bound by
each TF (“Methods”), and ~20% had one or more SNVs with
sufficient sequencing coverage to permit quantitative allelic
resolution of TF binding (Fig. 1b). Of these TFBS, in ~3–6% of
these cases, SNVs directly disrupt a binding motif. Most (ca. 62%)
SNVs are found in regions bound by only one TF, 34% are found
in regions bound by exactly two TFs, and 5% by all three TFs, and
are highly reproducible (Fig. 1c; Supplementary Fig. 2).

Cis and trans effects can be distinguished by the differences
in binding affinities among F0 parents and their F1 offspring, as
cis-acting variation must remain allele-specific28, 29, 32, 33, 35

(Supplementary Figs. 4a, 5). TFBS that had informative SNVs for
allelic resolution were classified into four regulatory categories—
conserved (non-differential), cis, trans, and cis–trans (affected by
variants acting both in cis and in trans) (Supplementary Fig. 4b)
(“Methods”).

Differences in TF binding occupancies between the two mouse
strains were most frequently affected by cis-acting variation
(44–49%), followed by cis trans (14–17%), and trans (8–13%);
23–30% of TF binding was conserved despite the presence of one
or more variants near the site of binding (Supplementary Fig. 4c).
Proportions of TFBSs belonging to each of the four categories
were similar between all TFs. As expected, there are fewer
conserved locations when SNVs directly disrupt the bound motif
(Supplementary Fig. 4c)19.

We confirmed the accuracy of the class assignment by
visualizing the difference in occupancy ratio between parental
alleles and F1 alleles. By subtracting the F1 BL6:CAST ratio from
the corresponding F0 ratio we found little difference in the allelic
ratios from the parent and offspring in cis and conserved
categories (Fig. 1d). In contrast, trans and cis trans categories
show appreciable genotype specific signal. We validated our
ChIP-seq measures of binding by performing allele-specific
pyrosequencing (Supplementary Fig. 6), confirming that ~40%
of genetic variations that affect TFBS are cis-acting, compared
with only 14% for liver-transcribed genes35.

Characterization of TF binding occupancy. To quantitate the
effect size of cis-acting variation on TF occupancy, we compared
TF binding between F0 and F1 individuals using Pearson’s cor-
relation (Fig. 2; Supplementary Fig. 7; “Methods”). In the absence
of noise, a correlation coefficient of zero indicates that cis and
trans contributions are equal, whereas a correlation coefficient of
one indicates the absence of trans effects. We find Pearson’s r for
TF binding to be significantly larger, and therefore cis dominated,
compared to gene expression (TF binding: r= 0.92, 95%
confidence interval (CI) (0.915, 0.919), P< 2.2e−16; expression:
r= 0.62, 95% CI (0.607, 0.631), P< 2.2e−16). Indeed, in 80% of
instances when we compared any randomly chosen TFBS to any
randomly chosen expressed gene, the magnitude of the cis
effect was greater for TF occupancy than for gene expression
(magnitude measured by the distance between F1 alleles over
10,000 random comparisons).
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For lineage-specific TF binding locations, determined using
Mus spretus as an outgroup44, we constructed statistical models to
test the extent of variation acting in cis vs. in cis–trans to
determine if variation that acts in cis or in trans is primarily
responsible for the creation of new TFBS. If the divergence was
only due to variants acting in cis, the binding strength in the F1
allele will be half that in the F0 mouse. If TF binding in the F1

mouse was also influenced by variants in trans, then these binding
intensities would be either greater or less than half the level found
in the parent (“Methods”). The vast majority (87%, 1056/1217) of
lineage-specific TFBS were affected by variation acting in cis
(Fig. 2c, d), while only 13% (161/1217) showed evidence of the
influence of trans-acting variation. Overall, lineage-specific sites
are up to two times less likely to have contributions from trans
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variants. Furthermore, we observed no lineage-specific TFBS were
affected only by trans-acting variants (i.e., strain-specific in F0
but equally bound in F1). Our results strongly suggest that
cis-directed variation either directly (e.g., modification of the
binding motif) or indirectly (e.g., through remodeling of
surrounding chromatin) play a required role in birth of TFBSs.

Next, we examined selective forces acting on TFBSs affected by
variation in both cis and trans. Binding sites that show increased
or decreased occupancy in the F1 due to cis–trans-acting variation
can have their effects decomposed into cis-acting variation that
are either compensated by, or further changed by, trans-acting
variation. We call changes compensatory when the difference in
binding intensities in F1< F0, whereas we call changes diversify-
ing when the difference in F1> F0. Under complete neutrality,
both compensatory and diversifying trans effects should be
equally favored28. Indeed, the frequency of compensatory vs.
diversifying effects is not significantly different at lineage-specific
TFBSs (binomial test, P= 0.6) (Supplementary Fig. 8a; Supple-
mentary Table 3), suggesting many allele-specific TF binding
events are neutral. However, of the 2563 CEPBA binding sites
affected by variation in both cis and trans found on both alleles,
64% show compensatory changes (binomial test, P< 2.2e−16),
suggesting that shared TFBSs are more frequently subject to
purifying or stabilizing selection (Supplementary Fig. 8a; Supple-
mentary Table 3). These numbers closely mirror the proportion
of compensatory vs. diversifying effects reported for gene
expression in liver (68% compensatory, 32% diverging)35. No
strain-specific TFBS affected only by variation in trans were
observed (i.e., strain-specific in F0 but equally bound in F1).
These results suggest that variation occurring is cis may either
directly (e.g., by modification of the binding motif) or indirectly
(e.g., through the opening up of chromatin by altering the shape
of the DNA) play a required role in birth of TFBSs.

Additionally, we found little difference in selection pressure
between strain-specific TFBSs that were gained and those that
were lost in either BL6 or CAST lineages in the <1 million years42

since their divergence. Lineage-specific TFBS can be caused by:
(1) lineage-specific loss of a TFBS that existed in the common
ancestor of BL6 and CAST (plesiomorphic) or (2) lineage-specific
gain since the most recent common ancestor in one strain
(apomorphic) (Supplementary Fig. 8b). To identify gained vs. lost
TFBS, we compared our lineage-specific TFBS with matched
TFBS data obtained from livers of M. Spretus (SPR)19, a mouse
species of equal evolutionary distance (ca. ~1.5–2MY) to both
BL6 and CAST44. We distinguished between BL6 vs. CAST
lineage-specific binding sites that are apomorphic (present in BL6
not CAST or SPR and present in CAST not in BL6 or SPR) and
plesiomorphic (shared between BL6 and SPR and between CAST
and SPR but not BL6 and CAST). Around 35% of TFBSs strain-
specific between BL6 and CAST were also found in SPR, placing a
lower bound on the number of plesiomorphic TFBSs. Proportions

of TF binding locations influenced by cis- or trans-acting
variation were evenly distributed between apomorphic and
plesiomorphic (binomial test, P> 0.01) suggesting that there is
little difference in selection pressure between strain-specific TFBS
that are gained vs. those that are lost.

We evaluated the potential regulatory activity of the TF
binding by mapping the genome-wide locations of H3K4me3
(marking transcription initiation sites) and H3K27ac (marking
potential enhancer activity)45 in F1 mouse livers (“Methods”). At
promoters, TF occupancy changes affected by variation acting in
cis and in both cis and trans were underrepresented (all TFs;
binomial test; cis: P= 1.1e−6, odds ratio (OR)= 0.8; cis–trans:
P= 1.2e−8, OR= 0.6), and conserved sites were overrepresented
(P< 2.2e−16, OR= 1.7) (Fig. 2b). Regions showing enhancer
activity were enriched for conserved TFBSs, and depleted
for TFBSs that were directed by cis and cis–trans variants
(cis: P= 3.4e−3, OR= 0.8; cis–trans: P= 1.6e−6, OR= 0.6;
conserved: P= 3.3e−8, OR= 1.5).

The stability of genomic occupancy at TFBSs was assessed by
evaluating the TF occupancy in BL6 mice with a single allele
deletion of Cepba or Hnf4a, which can reveal regulatory activity
and gene expression with more direct TF dependency46. When
TF expression was reduced, the change in TF occupancy level was
greater for binding sites influenced by cis-directed variation
compared to those with a conserved binding pattern (Supple-
mentary Fig. 9). This suggests that TFBSs affected by variation
acting in cis are more sensitive to changes in TF expression, while
non-differentially bound TFBSs are buffered.

TFBSs can be inherited in an additive or non-additive manner
for variation that acts in cis or in trans41. Additive inheritance
occurs when the combined occupancy of the F1 alleles is equal to
the sum of the two parental (BL6 and CAST) F0 alleles31, 41, 47.
Recall that cis and trans categories are defined by the occupancy
ratio between parental alleles and F1 alleles (“Methods”), while
inheritance concerns the total signal from both alleles. Dominant
inheritance occurs when the total allelic occupancy in the F1
offspring is equal to that of either parent (Fig. 2e). We fitted
statistical models for both scenarios and evaluated them using
Bayesian Information Criteria (BIC) (“Methods”).

Of the 2382 TFBSs influenced by cis-acting variation
(“Methods”), 72% (1720) showed additive inheritance (of which
1215 had BIC> 2), whereas 28% (662) appeared dominant, which
may partly reflect assignment errors (see Discussion section). In
contrast, of 341 TFBSs influenced by trans-acting variation 74%
(280) exhibit dominant inheritance, whereas only 26% (61) were
additive. Similar trends were observed for FOXA1 and HNF4A
(Supplementary Table 4).

We searched for evidence of over- and under-dominant
patterns of occupancy inheritance that may correspond, respec-
tively, to stronger or weaker F1 occupancy levels compared to
parental measurements. In gene expression, this pattern of

Fig. 2 Differences in TF binding intensities strongly affected by variation acting in cis and are additively inherited. a Mean F0 vs. F1 TF binding intensity ratios
(BL6 vs. CAST) for CEBPA are plotted in the left panel. The right panel shows mean F0 vs. F1 gene expression ratios for liver-expressed protein-coding genes35.
The correlation coefficient reflects the extent of cis-directed regulatory mechanisms. b Proportion of CEBPA binding locations at promoters and enhancers. The
width of the bar is proportional to the overall number of TFBSs in the “All” category. Binomial tests were used to test for enrichment at promoters and enhancers
for each regulatory class based on the overall numbers of TFBSs (“All”). ***P<0.0001, **P<0.001,* P<0.05. c Most allele-specific TFBSs are affected by
variation acting in cis. Lineage-specific TFBSs were defined as TFBSs where binding occurs either in BL6 or CAST in F0 individuals and in an allele-specific
manner in F1 individuals based on a cut-off (F0B6/(B6+CAST)>0.95, F1B6/(B6+CAST)>0.95, F0B6/(B6+CAST)<0.05, F1B6/(B6+CAST)<0.05). These TFBSs can be
sorted into the three categories described. d Mean CEBPA log2 F0 total read counts were plotted against mean log2 F1 read count (BL6 + CAST allele)
multiplied by 2. For the scatterplot, we used averages across biological replicates. TFBSs affected by variation acting in cis are thus expected to fall along the
diagonal and these have been colored blue (see c). Categories shown were determined by maximal likelihood estimation. e The majority of cis-directed TFBSs
are inherited additively. TFBSs affected by variation acting in transmay show additive or dominant inheritance patterns in TF binding intensities. Different modes
of inheritance were defined by comparing overall peak binding intensities between F0 and F1 individuals. Total F1 counts were individually scaled to 1 (yellow).
Red indicates TFBSs where F1> F0; blue indicates TFBSs where F1< F0. CEBPA data are shown
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imbalance can be associated with hybrid incompatibilities41, and
comprises ~27% and 8% (under- and over-dominant, respec-
tively) of expressed genes between two strains of fruit flies41. In
mice, we found that 6 and 11% of liver-expressed genes showed
under- and over-dominant modes of expression inheritance
(Supplementary Fig. 10). In contrast, <1% of sites in mouse
tissues were determined as under- or over-dominant across all
TFBSs (where BIC> 1) (Supplementary Table 5). Thus, under- or
over-dominant TFBS inheritance appears rarely if at all.

In summary, variation in TF occupancy is strongly influenced
by variation acting in cis, whereas TFBS affected by variation in
trans are uncommon. In contrast to gene expression41, TFBSs are
largely inherited additively, and TFBSs affected by variation acting
in trans are mostly dominantly inherited (Supplementary Fig. 10).

Influence of cis-acting variation decays with distance. We asked
what impact cis-acting variation have on TF occupancy at varying
genomic distances because chromatin state can depend on distal
functional elements5, 6. For example, in humans eQTLs are
considered local if they are within 2Mb of the gene they influ-
ence48 and many distant eQTLs are known to exist37.

We first confirmed that overlapping binding events from
different TFs share cis-acting variation more often than expected
by chance (Supplementary Fig. 11). We quantitated the affinity
with which cis-acting variation influence distant TF binding
occupancies using a complementary strategy to Waszak et al.6

Although the exact location of each causal variant is unknown,
the genomic span (or effect distance) of a cis-acting variant can be
inferred by examining co-variation in binding occupancies
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Fig. 3 Effect of genomic distance on cis-acting inter-peak correspondence. a Strategy for measuring the span of cis regulatory effects. Successive 1 kb bins
were taken from each TFBS affected by variation acting in cis starting 400 bp from the location of the SNV and extending in both directions. For each bin,
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chromatin contact. Enrichment values were calculated compared with expected rate of chromatin contact given the general enrichment for contact in each
regulatory dataset (i.e., cons, trans, cis, cis–trans). “Any” denotes the null background set of randomly chosen locations in the genome
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between neighboring TFBSs (“Methods”, Fig. 3a; Supplementary
Fig. 12).

The correspondence between TF binding occupancies
decreases at a logarithmic rate, with similar trends observed
across all three TFs (Fig. 3b). For example, the correspondence is
2–3 times lower at 50 kb than at 3 kb, but we nevertheless

detected correspondence affected by variation acting in cis
slightly above genomic background levels up to 400 kb away
(ρ= 0.01–0.02, linear regression). We estimated using vector
projection that the observed correspondence between TFBSs falls
off relatively quickly for ~13 kb and more slowly thereafter
(“Methods”) suggesting that the genomic scope of a cis-acting
variant on TF binding is on the order of 10 kb. Our results were
consistent across several bin sizes grouping nearby SNVs
(Supplementary Table 6). Different TF binding locations appear
to be similarly correlated, as shown recently for chromatin
domains5, 6.

Long-range coordination of TF occupancy could be affected by
cis-variation via three-dimensional interactions, and we therefore
searched for direct evidence that spatially distinct TFBSs interact
(Fig. 3c). We analyzed Hi-C data from BL6 mice49 to identify the
interaction end points that overlap CEBPA binding locations
(“Methods”). As expected, conserved sites were more likely
to overlap long-range interaction end points (logistic regression:
P< 0.05, OR= 1.14–1.20) (Supplementary Table 7). Chromatin
interactions anchored on a cis-associated location were strongly
enriched over the any-vs.-any background (binomial test;
P-value: cons vs. cons = 2.0e−8, cis vs. trans = 1.8e−9, cis vs.
cons = 4.0e−10, cis vs. cis= 5.7e−6, cis vs. cis–trans = 4.5e−4).
Significant enrichment over the any-vs.-any background set was
observed for all categories of TFBS.

Our data support a model where the cis-acting variants causal
for differences in TF binding occupancy are mostly proximal to
the TFBS they affect. However, regions with TF occupancy,
including TFBSs affected by variation that acts in cis, are
disproportionately found at interaction end points for genomic
domains, providing a possible mechanism for the observed long-
range correlations.

Coordination of regulatory mechanisms. The connection
between genetic variation with TF binding, chromatin state, and
gene expression has recently been studied in human cell
lines14, 15, 17. However, how genetic variants affect the interplay
and temporal ordering of these regulatory layers remains poorly
understood.

As above for TF binding, we classified the regulatory
mechanisms of variation underlying the allelic changes in
chromatin state and transcription based on whether these
differences are influenced by variation acting in cis, conserved,
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Fig. 4 Genetic and epigenetic influences that change TF binding have
parallel consequences for gene expression and chromatin. a, b Coordination
between the regulatory categories of variation in TF binding occupancy
variation and chromatin (a) and gene expression (b). Locations of the
considered TFBSs are noted in the cartoons on the left. Separate logistic
regressions were performed for each chromatin regulatory class (see
Methods section). Odds ratios were mean-centered for comparison across
chromatin regulatory classes. Absolute values of Z-scores >2 (α< 0.05)
are denoted by a black border. c Direct association between chromatin and
gene expression. Genes were linked to H3K4me3 modifications if the mark
was located within 5 kb upstream of the TSS. Binomial tests were
performed based on the expected background probability of observing the
same regulatory mechanism underlying both expression and histone
enrichment change. d High diversity in regulatory mechanisms of TF
binding variation is associated with gene expression influenced by cis–trans-
acting variation. Calculations are on a gene-by-gene basis for TFBSs 20 kb
upstream and 10 kb downstream of TSSs. These scores were compared
between genes grouped by transcriptional regulatory class. Significant
P-values for Mann–Whitney U-tests are shown. The surface area of the
violin plot is proportional to the number of genes in each class
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influenced by variation acting in trans, or by variation acting in
both cis and trans (Fig. 4; “Methods”). We then used logistic
regression to establish whether the mechanisms responsible for
regulating TF binding differences are enriched or depleted within
the corresponding chromatin and gene expression categories.

We found similar variant classes underlying TF binding
occupancy, chromatin state, and gene expression at the same
locus as represented by the darker red circles on the diagonal in
Fig. 4a, b. For example, the genetic variants that influence TF
binding in a cis-acting manner are more likely to be collocated
with H3K4me3 regions also showing changes influenced by
cis-acting variation (top left red circle in Fig. 4a). This is
compatible with models proposed by Kilpinen et al.15

Furthermore, there is a positive, albeit modest, correlation between
the direction of effect between allelic changes in TFBS occupancy and
gene expression (Supplementary Fig. 13). In other words, when a
TFBS increases its occupancy, then nearby gene transcription often
increases (binomial test, P= 2.9e−4) and with similar magnitude
(Spearman’s rank correlation, ρ= 0.29, P= 6.3e−12).

We controlled for the possibility that these effects are caused by
differences in expression levels by using an alternative strategy
that subsampled genes with least one TF binding event in the
region 20 kb upstream and 10 kb downstream of the TSS so that
they had matched expression levels between regulatory classes.
We found that genes showing conserved expression levels were
depleted for TFBSs with occupancy affected by variation in cis
(Mann–Whitney U-test on a per gene basis comparing the
numbers of different TFBSs near conserved regulated genes
against genes where expression is influenced by variation in cis or
cis–trans, P= 9.8e−11 and 2.2e−16, respectively). Hence, genes
whose expression variation is influenced by variation in both cis
and cis–trans possessed a higher than expected number of TFBSs
proximal to the TSS that were influenced by variation in cis.
Analysis of genes with expression affected by trans variants was
uninformative due to the small number of genes (14) in this
category.

We also confirmed previously observed correlations between
promoter chromatin state and gene expression50. We identified a
subtle but significant correspondence between the types of
regulatory variation underlying promoter activity differences
and gene expression differences (binomial test; cis P= 0.04,
cis–trans P= 0.03, conserved P= 0.02, trans P= 0.25) (Fig. 4c).
These results suggest robustness to our overall analysis.

Finally, TFBSs often act in concert with one another. Using
Shannon’s entropy, we compared the mechanistic diversity of TF
binding variants with the regulatory mechanisms of variation
affecting nearby gene expression (“Methods”). In effect, this
analysis asks whether the collective effect of the cis- and trans-
acting variation underlying changes to occupancy levels of
multiple TFBSs can propagate to gene expression. Expression
influenced by variation in cis or both cis and trans was
significantly more likely to be associated proximally to TFBSs
that are themselves affected by variation acting through diverse
mechanisms (Mann–Whitney U-test) (Fig. 4d). In contrast,
conserved expression was likely to be associated with TFBSs
directed by a similar type of variant. We controlled for the
possibility that the association between the diversity of TFBS and
the category of gene expression might be due to differences in
gene expression levels within each category by repeating
the analysis using expression matched subsets of genes
from each regulatory category. We observed little difference on
our core results (Mann–Whitney U-test; cis–trans vs. conserved:
P= 1.4e−7, cis vs. conserved: P= 1.4e−3). Our results therefore
suggest that genes affected by variation that is cis-acting
and cis–trans-acting are more likely to be proximal to TFBS of
high mechanistic diversity.

Discussion
Directly connecting genome-wide observations of TF binding
with functional outputs in gene expression is challenging because
of what appears to be two conflicting observations. On the one
hand, most variation in the human genome associated with
complex disease and other phenotypes is non-coding4. Even for
Mendelian disorders, exome sequencing can suggest causative
sequence changes in only a minority of cases (~25%)51. Both
point to a major role for functional sequence changes in the
regulatory regions of the genome, which subsequently lead to
changes in gene expression. On the other hand, TF binding
demonstrates both variability between even genetically identical
individuals and such strikingly rapid evolutionary change52 that it
is tempting to conclude that the vast majority of TF binding is
non-functional “biological noise”53.

Here, we have undertaken a detailed and comprehensive
dissection of the genetic mechanisms driving TF binding
occupancy differences in mammals and integrated these results
with chromatin and gene expression information. Our initial
findings regarding how genetic sequence variation associates
with TF binding differences between alleles are consistent with
previous reports at a more limited set of locations in murine
immune cells54, human lymphoblast cells14, 18, and using
computational simulations55, 56. Specifically, almost three
quarters of assayed quantitative differences in TF binding
occupancy appear to be the result of nearby genetic differences
that acts in cis.

However, our integrated analysis extending from TF binding
to output gene expression using F1 inter-strain mouse crosses
revealed a number of insights. First, the vast majority of trans-
directed TF binding differences are dominantly inherited.
Although most binding influenced by cis-acting variation is
inherited additively, as expected, a small proportion appears to
show dominance/recessive inheritance. One plausible biological
explanation is the presence of variation acting in trans that does
not interact with cis-acting variation at each allele. Despite this,
cis and trans-acting variation driving TF occupancy change show
clear differences in their mode of inheritance. Second, allelic
differences in TF binding are correlated at kilobase distances
above the genomic background, likely influenced by neighboring
cis-acting variation. A minor fraction of TFBSs show long-range
coordination, which may be driven by enrichment of TFBS at
chromatin contacts. Such long-range correspondence is similar to
recently described coordination of chromatin states within
topological domains6, 57. Third, we demonstrate interplay
between the different mechanisms of variation that underlie TF
binding and tissue-specific gene expression in vivo. Aspects of the
regulatory interplay between chromatin and gene expression has
been reported in human cell lines and mouse species15, 58–61.

The F1 genetic cross analysis is very effective at disambiguating
cis- and trans-acting regulation overall. Our data show
that genetic variants can (simultaneously) direct TF binding,
chromatin, and gene expression changes using a similar combi-
nation of regulatory variation that acts in cis and trans. However,
the full temporal order of regulatory events cannot be determined
from our data. For instance, our results do not reveal whether
genetic variants first affect TF binding, which then affects chro-
matin or vice versa. However, the presence of an additional trans
component in gene expression suggests that it is downstream of
both TF binding and chromatin modifications.

The independently determined categories of regulatory varia-
tion correspond well between TF occupancy and gene expression.
This is potentially surprising given the difference in the overall
regulatory repertoire between TF binding and gene expression.
Namely, protein–DNA interactions are shaped by a compara-
tively simple combination of DNA sequences, chromatin context,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01037-x

8 NATURE COMMUNICATIONS | 8:  1092 |DOI: 10.1038/s41467-017-01037-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


and (in some cases) non-coding RNA associations. In contrast, a
multitude of regulatory processes influence gene expression,
including TF binding as well as post-transcription processing,
translation rate, and messenger RNA degradation. Our results
support a model whereby the variation underlying gene
expression differences arise substantially from a composite of
the variation that modulate TF binding differences in multiple
individual TFBSs.

Our analysis has specific limitations. Our approach cannot
analyze the majority of TFBSs where no informative SNV
is present, and these unclassified TFBSs are more likely to be
conserved. However, a change in the relative proportion of
regulatory categories is not expected to influence our key findings,
which were focused on the regulatory mechanism effect size. Our
analysis ignores structural variants, and we have not directly
measured fitness in the F1 animals. We also cannot preclude the
possibility that tissues other than liver may demonstrate a greater
affect of trans-acting variation on TF binding differences.
Although most tissue-specific gene expression appears to be
driven by combinatorial TF binding of dozens of TFs10, we
have profiled only a subset of three. However, analysis of the
occupancy of over a 100 TFs in one tissue strongly suggest
that our data will reflect the typical mechanistic contributions
influencing the evolution of all tissue-specific TFs62. Finally, our
technical definition of the binding sites affected by both cis and
trans variation will include TFBSs with high biological and/or
technical heterogeneity.

Our work builds upon previous findings of genomic coordi-
nation among TF binding, chromatin marks, and
transcription5, 6, 15, 63 and highlights the key role played by the
basal variation that underlie TF binding in directing regulatory
change.

Methods
Sample collection and preparation. All mice were housed in the same husbandry
conditions within the Biological Resources Unit in the Cancer Research
UK–Cambridge Institute under a Home Office Licence. C57BL/6J (stock number
000664, imported from Charles River Labs) and CAST/EiJ (stock number 000928,
imported from The Jackson Laboratory (www.jax.com)) mouse strains were used in
experiments as parental strains (F0) as well as for breeding of reciprocal crosses of
F1 mice. All mice used in the experiments were males between 8 and 12 weeks of
age, and harvested at the same time of day (between 8 and 11 a.m.). Liver perfusion
was performed on mice post mortem, prior to tissue dissection. Harvested tissues
were formaldehyde cross-linked for ChIP-seq experiments. Before cross-linking,
dissected tissue was immediately chopped post mortem and added to a cross-linking
solution containing 1% formaldehyde. Tissue was incubated for 20 min prior to
quenching with 1/20th volume of 2.5M glycine. Samples were incubated for a
further 10 min before washing with PBS and flash-freezing and storage at −80 °C.

Generation of HNF4A and CEBPA heterozygous mice. To create HNF4A and
CEBPA heterozygous knockout mice, we acquired mice with targeted alleles from
The Jackson Laboratory (HNF4A stock number: 00466564; CEBPA stock number:
00623065). Heterozygous knockouts were generated via the Cre-loxP system66

using the germline deleter strain PgkCre67, obtained from The Jackson Laboratory,
and crossing it to CebpaFLOX/FLOX and Hnf4aFLOX/WT mice. Ear biopsies
were taken at the time of weaning for genotyping to confirm deletion via PCR
(Supplementary Table 8).

ChIP-seq experimental procedure. The ChIP-seq protocol used was as described
by Schmidt et al.68 Briefly, livers were isolated from 10 to 12 weeks old mice and
liver tissue was post mortem cross-linked using 1% formaldehyde (v/v), lysed and
sonicated. Protein-bound DNA was immunoprecipitated using 10 µg of an anti-
body against CEBPA (Santa Cruz, sc-9314), HNF4A (ARP 31946_P050), FOXA1
(ab5089, Abcam), H3K27ac (ab4729, Abcam), or H3K4me3 (Millipore 05-1339).
Immunoprecipitated DNA was end-repaired at 20 °C for 30 min, Adenine over-
hang was added at 37 °C for 30 min, and Illumina sequencing adapters ligated
at room temperature for 15 min before 16 cycles of PCR amplification. PCR
conditions: (1) 98 °C—30 s; (2) 98 °C—30 s, 65 °C—30 s, 72 °C—30 s, 16 cycles;
(3) 72 °C—5 min. DNA fragments ranging from 200- to 300-bp in size were
selected on a 2% agarose gel for 50-bp single-end read sequencing on an Illumina
HiSeq 2000 according to the manufacturer’s instructions.

Validation of allele-specific TF binding with pyrosequencing. We performed
pyrosequencing to confirm the allele-specific occupancy of CEBPA in livers from
F1 mice in both genetic cross directions. The assays and primers (Supplementary
Table 9) for pyrosequencing were designed using PyroMark Assay Design Software.
The annealing temperature for PCR primers was optimized by gradient PCR.
Primers efficiency was confirmed using quality controls with different proportion
of BL6 and CAST DNA (0/100%, 30/70%, 50/50%, 70/30%, 100/0%). PCR con-
ditions: (1) 95 °C—5 min; (2) 94 °C—30 s, optimized t°C—30 s, 72 °C—55 s,
40 cycles; (3) 72 °C—5 min. PCR product was mixed with streptavidin beads
dissolved in binding buffer and gently shaken for 20 min. Sequencing primers were
dissolved in annealing buffer and aliquoted into PSQ plate. DNA beads were
cleaned on the PyroMark vacuum workstation and then mixed with PSQ Primer/
Annealing Buffer. The samples were incubated at 85 °C for 3 min, centrifuged
for 3–4 min at 2500 rpm and then loaded to the pyrosequencer. PyroMark Gold
Q96 SQA reagents were used to load the pyrosequencer.

Estimation of allele-specific binding level. We constructed the Mus musculus
castaneus genome assembly using CAST/EiJ SNV calls (ENA accession:
ERS076381) against the M. musculus reference assembly (C57BL/6J)69. SNVs were
mapped from their original calls on NCBI37/mm9 to the latest version of the
mouse assembly, GRCm38.p2/mm10, and nucleotides at each base position were
changed to reflect point mutations in CAST. SNV calls were available for all
autosomes and the X chromosome.

To assess allele-specific binding and histone enrichment, we aligned reads to an
alignment index comprising of both GRCm38.p2/mm10 (BL6) and CAST
assemblies. Indexing of the genomes was performed using BWA (Version 0.7.3a)70.
Raw sequencing reads were first filtered and trimmed using Trimmomatic (Version
0.3)71. We required a minimum phred score of 30 using a sliding window of 20 bp,
and only kept a read if it matched these criteria while maintaining a minimal
overall length of 40 bp. We aligned filtered reads using BWA with a maximum of
two mismatches per read (-n 2). Reads that mapped equally well to multiple
locations were discarded by filtering based on the “XT:A:U” alignment tag. Our
alignment statistics showed our approach assigned reads to each strain with high
specificity (see Supplementary Fig. 3). The proportion of F1 reads aligning to the
combined BL6 and CAST genomes was roughly 51:49, respectively. Proportions of
BL6 TFBSs vs. CAST TFBSs called from these alignments were similar.

The mpileup program from the SAMtools package72 was used to count the
number of reads that overlapped each base of the joint assembly. We then filtered
these counts to retain only those genomic locations, where it was possible to
distinguish between BL6 and CAST backgrounds. We only retained sites for
analysis where a minimum of 10 reads mapped to either F0 CAST or F0 BL6 across
replicates. For F1 crosses, we retained sites overlapping at least 10 reads for at least
10 allele-specific replicates. We repeated these steps on a site-specific manner
for each TF/histone mark, irrespective of whether multiple SNVs existed at each
ChIP-seq peak.

Prior to fitting statistical models and further downstream analyses, we
normalized for sequencing depth by adjusting for differences in library sizes across
biological replicates in F0 and F1 populations for each TF/histone mark. A constant
scaling factor was estimated for each library based on the median of the ratio of
reads at each SNV over its geometric mean across all libraries tested. This
normalization constant was then applied to each library under the assumption that
count differences attributable to biological effects only exists in a small proportion
of the total number of sites. This procedure was performed using R Bioconductor
package “DESeq”73.

To assess overall peak counts and determine the quality of each ChIP
experiment, we also aligned reads from each library (F0 and F1) to the GRCm38.
p2/mm10 genome using GSNAP74 with a less stringent mapping criteria. We used
a less conservative mismatch threshold (maximum mismatch of three bases per
read) to allow F1 reads derived from the CAST allele to map against the BL6
genome. Based on overall SNV numbers between the strains, a rough estimation
suggests that there are ~1 SNV every 100 bp, which distinguishes the strains.
Regions bound by both TFs and covalently modified histones were called using
MACS1.475 using default parameters.

To mitigate the impact of potential batch effects, biological replicates for each
TF for each genetic background were prepared and sequenced in three independent
flowcells.

We estimated TF occupancy levels for the histone modification H3K4me3 by
taking into account the fact that histone marks typically localize over a broader
genomic region than do TFBSs. Wider regions cause a dilution in the number of
reads overlapping SNVs, relative to binding site numbers and sequencing depth.
Hence, to increase our ability to resolve binding differences at H3K4me3 loci, we
summed the counts of all SNVs overlapping the same region. To ensure
background-specific peaks were captured, we constructed a summary peak file
comprised of the union of genomic intervals from peak calls from individuals of
different genetic backgrounds (BL6, CAST, and BL6xCAST) (library reference:
do3342, do3337, do3411).

We identified between 6000 and 8000 TF-bound regions per TF where two or
more SNVs lie within close (<250 bp) proximity; ~85% of these co-located SNVs
showed the same allelic direction of TF binding between BL6 and CAST. To avoid
multiple counting of TF binding events, we only used one SNV in any 250 bp
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region in further analyses. Our results were highly reproducible among replicates
(Supplementary Fig. 2) with similar numbers of reads mapping to each genome
(Supplementary Fig. 3).

Statistical models for identifying regulatory mechanisms. ChIP-seq read counts
were used as a proxy for the binding intensities of a TF to the DNA7. Sites were
classified into regulatory categories using the method of Goncalves et al.35

We defined as conserved those regions with equal TF binding occupancy
between BL6 and CAST in both F0 and F1 individuals, despite the presence of one
or more variants near the site of binding; these types of sites could also be described
as non-differentially bound28. We defined TFBSs influenced by cis-acting variation
as sites where the TF occupancy ratios between BL6 and CAST genomes found in
the F0 parents is the same as that observed between alleles in the F1 offspring,
meaning that binding occupancy differences between strains were determined by
locally acting genetic sequences. We defined TF binding influenced by trans-acting
variation based on TF binding occupancy differences between parents, but not
between alleles in the F1 offspring. Finally, we defined binding sites influenced by
cis–trans-acting variation as showing a complex mixture of cis and trans-acting
variation.

For each TF or histone mark, F0 counts from each strain were modeled as a
negative binomial marginal distribution, while F1 counts were modeled using a
beta-binomial distribution where the parameters of the beta distribution modeled
the proportional contribution from each allele. For each TF and histone mark,
there were 6 replicates (i) for each F0 strain and 12 replicates (j) for F1 samples. F0
counts for each strain (xi and yi) were assumed to follow negative binomial
distributions while F1 counts (nj) were modeled on an allele-specific basis (zj) using
a beta-binomial distribution:

xi � Po μið Þ; yi � Po υið Þ; zj � Bi nj; pj
� �

μi � Ga r;
pμ

1� pμ

� �
; vi � Ga r;

pv
1� pv

� �
; pj � Be α; βð Þ;

where xi is formally defined as the binding intensity of the variant in the ith C57BL/
6J F0 mouse, yi is the binding intensity of the variant in the ith CAST/EiJ F0 mouse,
nj is the number of reads mapping across both allelic variants in the jth F1 hybrid
and zj is the number of reads mapping to the C57BL/6J allele in the jth F1 hybrid.

We estimate the dispersion parameter r for F0 samples using the
“estimateDispersions” function within “DESeq” with local regression fit. r was used
as the reciprocal of the fitted dispersion value from “DESeq”.

We constrained parameter estimation for each distribution based on four
different regulatory scenarios and derived maximum likelihood values for each
hypothetical case on a site-by-site basis. The four models are described below:

Conserved : pμ ¼ pν and α ¼ β

Cis : pμ ≠ pν and
α

αþ β
¼

pμ
1�pμ

pμ
1�pμ

þ pv
1�pv

Trans : pμ ≠ pν and α ¼ β

Cis� trans : pμ ≠ pν and α≠ β:

To identify the most probable model at each variant, we used the BIC.
To avoid confounding results from the analysis of variants derived from the

same binding site, downstream analyses only used variants spaced at least 250 bp
apart. Hence, where two or more variants were found spaced within 250 bp of one
another, only one variant was chosen for subsequent analyses.

Identification of motif-disrupting variants. MEME76 was used to perform de
novo search for enriched motifs for each TF using one randomly chosen ChIP-seq
library per TF (library identifiers do3488, do3463, and do3483). Sequences ±50 bp
from all peak summits were extracted for analysis; where multiple motifs exist in a
peak, the motif sequence with the best score was retained.

Regional enrichment of mechanisms driving TF occupancy. Enrichment for TF
regulatory categories that overlapped the location of histone marks was assessed
using the exact binomial test. Colocation was defined using an overlap of 1 bp. The
probability of success in the Bernoulli trial was defined for each TF based on its
proportion of binding categories.

To assess whether co-locating TFs (i.e., binding at the same SNV) share the
same regulatory category (i.e., cis, cis–trans, conserved, trans) more often than
expected by chance, we calculated the expected probability of Bernoulli success as
follows:

pi ¼ bFOXA1;i ´ bHNF4A;i ´ bCEBPA;i;

where b is the proportion of TFBSs in regulatory category i at TFBSs where all three
TFs co-locate.

Differential binding analysis of heterozygous vs. WT mice. The genome-wide
binding of CEBPA, HNF4A was assessed in CepbaFLOX/− and Hnf4aFLOX/− mice.
Three biological replicates per condition (HET or WT) per antibody were

compared to quantify changes in TF binding intensity after heterozygous TF
deletion. We then sorted the TFBSs based on whether their occupancy was
conserved or affected by variation in cis or both cis and trans. Binding intensities
were considered as the number of reads at the summit of peaks that were called by
MACS1.475. The same WT input libraries were used for peak calling in both HET
and WT samples. We filtered out peaks with a read count cut-off of <11 reads in
<5 libraries. Prior to differential binding comparisons, upper quantile normal-
ization77 was used to adjust for differences in sequencing depth between libraries.
For each TF, “edgeR”78 was used to identify peaks with different binding intensities
between HET and WT samples, using a significance cut-off of FDR< 0.1.

Assigning modes of TF occupancy inheritance. To identify the mode of
inheritance of TF binding intensities at non-conserved TFBSs, F0 and F1 libraries
were first adjusted for differences in sequencing depth using the median of the ratio
of reads at each SNV over its geometric mean across all libraries as a constant
normalization factor for each library73. Next, data from each SNV were fitted to
statistical models reflecting either additive or dominant/recessive inheritance pat-
terns. Models were constructed based the following premise: if offspring binding
intensities were inherited via an additive mode of inheritance, we would expect the
combined offspring binding intensity from both alleles to equal the summed
binding intensity of parental alleles; on the other hand, if inherited through a
dominant/recessive mode of inheritance, we would expect the combined binding
intensity in the offspring across both alleles to equal the total intensity of one but
not the other of its parents. We assumed read counts followed negative binomial
distributions. Here, we formally define the models:

xmax;i � Po pmax;i
� �

; xmin;i � Po pmin;i
� �

; yi � Po oið Þ;
xmax,i is defined as the normalized read count binding intensity of the variant in

the ith F0 mouse from the parental strain showing the higher median binding
intensity among replicates, xmin,i is the normalized read count binding intensity of
the variant in the ith F0 mouse from the parental strain with the lower median
binding intensity among replicates. yi is the binding intensity of the variant in the
ith F1 mouse summed across both alleles.

pmax;i � Ga r;
Spmax

1� Spmax

� �
; pmin;i � Ga r;

Spmin

1� Spmin

� �
; oi � Ga r;

So
1� So

� �
:

As above, the dispersion parameter, r, was estimated using “DESeq”. We used
maximum likelihood estimation to fit the counts to the models below and used BIC
to assess which of the following two models best fit counts from each site affected
by variation in cis or trans.

Dominant : Spmax ¼ So or Spmin ¼ So
Additive : Spmax ≠ So and Spmin ≠ So:

We excluded those sites from our results where the parameter estimated for the
offspring, So, was indistinguishable from the parameters estimated for both parent,
i.e., if So= Spmax and So= Spmin. Such sites were determined by comparing the
dominant and additive models separately for pmax,i and pmin,i, and excluding sites
found to fit the dominant model in both. It is possible that additively inherited
TFBSs may be misclassified if the difference in binding intensities between the
parental measurements is small enough that the F1 measurement is statistically
indistinguishable from either parent due to measurement noise. To minimize this
potential source of error, we restricted tested sites to those TFBSs, where the
difference between the means of B6F0 and CASTF0 across biological replicates was
equal or greater than twice the standard deviation of the average binding intensity
across biological replicates (this was set at 19 normalized counts or more). To
further increase confidence in our results, we only used sites assigned to their
regulatory category with BIC> 1.

Over- and under-dominant TFBSs were identified by first restricting all TFBSs
to those classified to a regulatory class with BIC > 1. Normalized count data at each
TFBS were fitted to the models described above. For each TFBS where the binding
occupancy of each parent did not equal to that of the offspring (i.e., Spmax ≠ So,
Spmin ≠ So), TFBSs were classified as under-dominant if the mean F1 occupancy
level among replicates was less than that of both parents. On the other hand, TFBSs
were classified as over-dominant when the mean F1 occupancy level was greater
than that of both parents.

Distinguishing influences at lineage-specific TFBSs. Described below are the
statistical methods used to distinguish between cis and cis–trans influences at
lineage-specific TFBSs. Read counts were normalized between F0 and F1
libraries as described in the previous section73. Lineage-specific binding sites were
defined as those sites meeting these criteria: (ratioF0< 0.05 and ratioF1< 0.05) or
(ratioF0> 0.95 and ratioF1> 0.95). ratioF0= B6F0/(B6F0/CASTF0) and ratioF1=
B6F1/(B6F1/CASTF1), where ratios were determined between mean levels of binding
among biological replicates. We expect that a lineage-specific site that is influenced
only by cis-acting variation would possess F1 count levels that are half of that in F0.
Significant deviation from this 2:1 ratio would indicate variation acting in trans.
We constructed the following statistical models to test the likelihood of these
scenarios for each lineage-specific site and used maximum likelihood estimation
and BIC to choose the model of best fit. At each TFBS, reads across replicates were
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modeled using the negative binomial distribution.

xi � Po pið Þ; 2yi � Po oið Þ

pi � Ga r;
Spmax

1� Spmax

� �
; oi � Ga r;

So
1� So

� �
;

xi is defined as the normalized read count binding intensity of the variant in the
ith F0 mouse from the strain of lineage-specific binding. yi is the binding intensity
of the variant in the ith F1 mouse summed across both alleles. The dispersion
parameter, r, was estimated using “DESeq”, as described above. We tested the two
following scenarios:

Cis : Spmax ¼ So
Cis� trans : Spmax ≠ So:

Comparison of regulatory mechanisms underlying variation. We compared
regulatory mechanisms underlying variation in gene expression, chromatin state,
and TF binding. Logistic regressions were used to examine the relationship between
gene expression and TF binding. For each gene where expression variation was
classified as affected by variation acting in cis, both cis and trans, conserved, and in
trans, we determined the transcriptional context by counting the numbers of each
TFBSs, in each TF regulatory category, located in the window 20 kb upstream and
10 kb downstream of the TSS. Counts of TFBSs in each regulatory category (i.e.,
number of TFBSs where occupancy levels were affected by cis-acting variation, etc)
were then used as four independent predictive variables. Separate regressions were
performed using each of the four expression regulatory classes in turn as the
dependent variable. The binary nature of the dependent variable was defined using
remaining regulatory categories.

We used the same strategy to study the relationship between TF binding and
chromatin state (H3k4me3), i.e., the mechanistic relationship between TFBSs
proximal to the histone mark was assessed using logistic regression. The size of the
genomic regions used for the grouping of TFBSs was ±2 kb from each histone mark
location.

To test for shared regulatory mechanisms between H3K4me3 and gene
expression, the histone marks were assigned to genes when they were located
within 5 kb upstream of a TSS. Binomial tests were then used to calculate the
statistical enrichment of shared regulatory mechanisms between gene expression
and the associated histone marks.

We computed the diversity of TF regulatory mechanisms for genes grouped by
expression mechanisms using Shannon’s diversity index (H′)79, which was
calculated for each gene as follows:

H0 ¼ �
X4

i¼1

ai ln ai;

where ai is the proportion of binding sites belonging to the ith TF binding
regulatory category within 20 kb upstream or 10 kb downstream of a liver-
expressed protein-coding gene.

Gene expression levels show correlation with TFBS abundance, and highly
expressed genes are expected to be proximal to a more diverse set of mechanisms
underlying TF occupancy change than by chance alone. Hence, to control for
differences in expression levels, we subsampled genes to obtain matched gene
expression levels between comparison sets. Gene expression levels were compared
based on the average expression value among biological replicates of the more
highly expressed parent. Mean expression levels were first log-transformed, then
separated into 20 bins of equal consecutive intervals. Each gene affected by
variation acting in both cis and trans was then matched to a conserved regulated
gene assigned to the same expression bin. In the same way, genes affected by
variation acting in cis were matched in expression values to conserved genes. All
subsampling was done with replacement.

Measuring inter-peak coordination of TF binding occupancy. To determine the
genomic region under the influence of any set of cis-acting regulatory variants, we
calculated correlation coefficients for binding intensities of TFBS pairs at successive
genomic intervals away from each cis-directed TFBS. To capture the coordination
of TF occupancies between TFBSs, we calculated Spearman’s correlation coefficient
of allelic proportions (BL6/(BL6 + CAST)) between binding sites at consecutive
distance bins centered upon variants acting in cis. Spearman’s ρ was calculated for
each mutually exclusive bin with their “anchor” peak. Each succeeding bin was
increased in interval width by one additional kb (1 kb) from the cis-acting variant.
We performed linear regression using log-transformed distances as the predictor
variable with Spearman’s ρ estimates as the outcome variable to quantify the decay
in correlation signal (“Methods”, Fig. 3a, b; Supplementary Fig. 12).

In order for meaningful inference, we generated a null distribution of the
correlation of binding strengths by comparing occupancy levels of anchor TFBSs
with the occupancies of other TFBS locations sampled randomly from across the
genome. Null values were calculated using TFBSs that were randomly sampled
from the total pool (without replacement) to simulate a set of binned peaks for
each anchor peak (anchor peaks were kept constant). The total number of binned

peak simulated was equal to the total number of anchored–binned peak pairings
observed. Spearman’s ρ was then calculated as described for the observed set.

To estimate the genomic distance at which the “elbow” or maximum curvature
of the curve occurs, we used a vector projection method on the fitted regression
curve80. First, we drew a line connecting the points from x= 1 kb to where
x= 50,000. Next, for every point on this line at values of x we extended
perpendicular lines to intersect with our regression line. We then measured the
lengths of each of these lines and selected the point with the longest length as the
estimate of the elbow.

Hi-C data processing and analysis. Hi-C libraries were generated from pooled
liver samples from two 2–4-week old mice49. Raw data files were quality filtered
using Trimmomatic71 using identical parameters to those described above. We
used the Homer Hi-C software (http://homer.salk.edu/homer/interactions/) to
process Hi-C reads and to identify significant interactions. Restriction sites
(“AAGCTT”) were trimmed from our reads prior to mapping to the GRCm38.p2/
mm10 genome using GSNAP at a maximum of two mismatches per read. Only
reads mapping to unique locations in the genome were retained. Paired reads that
likely represent continuous genomic fragments or re-ligation events were removed
if the reads are separated by <1.5× the sequencing insert fragment length
(-removePEbg). Paired ends that originate from areas of unusually high read
density were also removed by scanning 10 kb regions in the genome and removing
reads containing greater than five times the average number of reads (-remove-
Spikes 10000 5). Only reads where both ends of the paired read have a restriction
site within the fragment length 3′ to the read were kept (-both). We also filtered
reads if their ends self-ligated with adjacent restriction sites (-removeSelfLigation).

To detect significant interactions between two genomic locations, we created a
background model to account for the primary sources of technical biases. For
example, closely spaced loci are inevitably enriched for interactions due to their
close proximity. We used Homer to normalize both for linear distance and read
depth. We normalized our reads at 10 kb regions across the genome and examined
the number of interactions occurring between these regions. Enrichment for
significant interactions was identified using a binomial test against the expected
number of interactions based on the background model that also accounts for the
total number of reads mapping to each locus being tested. The parameters for the
binomial test includes (i) the probability of success is the expected interaction
frequency (which vary depending on restriction site locations), (ii) the number of
success is the number of reads mapping between the loci, and (iii) the number of
trials is the overall number of significantly interacting reads.

Data availability. Raw data have been deposited under ArrayExpress accession
E-MTAB-4089. Processed data are available from http://www.ebi.ac.uk/research/
flicek/publications/FOG19.
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