102 research outputs found

    Tau Oligomers as Potential Drug Target for Alzheimer Disease (AD) Treatment

    Get PDF

    Toxic Tau Oligomers Modulated by Novel Curcumin Derivatives

    Get PDF
    The pathological aggregation and accumulation of tau, a microtubule-associated protein, is a common feature amongst more than 18 different neurodegenerative diseases that are collectively known as tauopathies. Recently, it has been demonstrated that the soluble and hydrophobic tau oligomers are highly toxic in vitro due to their capacity towards seeding tau misfolding, thereby propagating the tau pathology seen across different neurodegenerative diseases. Modulating the aggregation state of tau oligomers through the use of small molecules could be a useful therapeutic strategy to target their toxicity, regardless of other factors involved in their formation. In this study, we screened and tested a small library of newly synthesized curcumin derivatives against preformed recombinant tau oligomers. Our results show that the curcumin derivatives affect and modulate the tau oligomer aggregation pathways, converting to a more aggregated non-toxic state as assessed in the human neuroblastoma SH-SY5Y cell line and primary cortical neuron cultures. These results provide insight into tau aggregation and may become a basis for the discovery of new therapeutic agents, as well as advance the diagnostic field for the detection of toxic tau oligomers

    Amyloid Beta Annular Protofibrils in Cell Processes and Synapses Accumulate with Aging and Alzheimer-Associated Genetic Modification

    Get PDF
    Amyloid β (Aβ) annular protofibrils (APFs) have been described where the structure is related to that of β barrel pore-forming bacterial toxins and exhibits cellular toxicity. To investigate the relationship of Aβ APFs to disease and their ultrastructural localization in brain tissue, we conducted a pre-embedding immunoelectron microscopic study using anti-annular protofibril antiserum. We examined brain tissues of young- and old-aged amyloid precursor protein transgenic mice (APP23), neprilysin knockout APP23 mice, and nontransgenic littermates. αAPF-immunoreactions tended to be found (1) on plasma membranes and vesicles inside of cell processes, but not on amyloid fibrils, (2) with higher density due to aging, APP transgene, and neprilysin deficiency, and (3) with higher positive rate at synaptic compartments in aged APP23, especially in neprilysin knockout APP23 mice. These findings imply that APFs are distinct from amyloid fibrils, interact with biological membranes, and might be related to synaptic dysfunction in Alzheimer model mouse brains

    ApoE4-Driven Accumulation of Intraneuronal Oligomerized Aβ42 following Activation of the Amyloid Cascade In Vivo Is Mediated by a Gain of Function

    Get PDF
    Activating the amyloid cascade by inhibiting the Aβ-degrading enzyme neprilysin in targeted replacement mice, which express either apoE4 or apoE3, results in the specific accumulation of oligomerized Aβ42 in hippocampal CA1 neurons of the apoE4 mice. We presently investigated the extent to which the apoE4-driven accumulation of Aβ42 and the resulting mitochondrial pathology are due to either gain or loss of function. This revealed that inhibition of neprilysin for one week triggers the accumulation of Aβ42 in hippocampal CA1 neurons of the apoE4 mice but not of either the corresponding apoE3 mice or apoE-deficient mice. At 10 days, Aβ42 also accumulated in the CA1 neurons of the apoE-deficient mice but not in those of the apoE3 mice. Mitochondrial pathology, which in the apoE4 mice is an early pathological consequence following inhibition of neprilyisn, also occurs in the apoE-deficient but not in the apoE3 mice and the magnitude of this effect correlates with the levels of accumulated Aβ42 and oligomerized Aβ42 in these mice. These findings suggest that the rate-limiting step in the pathological effects of apoE4 on CA1 neurons is the accumulation of intracellular oligomerized Aβ42 which is mediated via a gain of function property of apoE4

    Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD) patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate.</p> <p>Results</p> <p>Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I), and activated caspase-9, which is related to the apoptotic mitochondrial pathway.</p> <p>Conclusions</p> <p>This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.</p

    Транспортный комплекс в экономике России и его реформирование (на примере ООО ТЦП - Томский центр перевозок)

    Get PDF
    В данной работе была затронута тема о специфике работы транспортной логистики, проанализированы данные компании ООО "ТЦП", выявлены основные проблемы и проведена аналитика деятельности компанииIn this work, the topic of the specifics of the transport logistics analyzed the data of the company LLC TSP identified the main problems and carried out Analytics of the compan

    Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The multifunctional protein vitronectin is present within the deposits associated with Alzheimer disease (AD), age-related macular degeneration (AMD), atherosclerosis, systemic amyloidoses, and glomerulonephritis. The extent to which vitronectin contributes to amyloid formation within these plaques, which contain misfolded, amyloidogenic proteins, and the role of vitronectin in the pathophysiology of the aforementioned diseases is currently unknown. The investigation of vitronectin aggregation is significant since the formation of oligomeric and fibrillar structures are common features of amyloid proteins.</p> <p>Results</p> <p>We observed vitronectin immunoreactivity in senile plaques of AD brain, which exhibited overlap with the amyloid fibril-specific OC antibody, suggesting that vitronectin is deposited at sites of amyloid formation. Of particular interest is the growing body of evidence indicating that soluble nonfibrillar oligomers may be responsible for the development and progression of amyloid diseases. In this study we demonstrate that both plasma-purified and recombinant human vitronectin readily form spherical oligomers and typical amyloid fibrils. Vitronectin oligomers are toxic to cultured neuroblastoma and retinal pigment epithelium (RPE) cells, possibly via a membrane-dependent mechanism, as they cause leakage of synthetic vesicles. Oligomer toxicity was attenuated in RPE cells by the anti-oligomer A11 antibody. Vitronectin fibrils contain a C-terminal protease-resistant fragment, which may approximate the core region of residues essential to amyloid formation.</p> <p>Conclusion</p> <p>These data reveal the propensity of vitronectin to behave as an amyloid protein and put forth the possibilities that accumulation of misfolded vitronectin may contribute to aggregate formation seen in age-related amyloid diseases.</p
    corecore