6 research outputs found

    An evolutionary and genomic approach to understand tumor evolution in hepatocellular carcinoma

    No full text
    Hepatocellular carcinoma (HCC) is one of the deadliest cancer types with diverse etiological factors across the world and very limited treatment options. Although large-scale genomic and transcriptomic studies have been conducted in different cohorts, an integrative analysis of HCC genomes and the ethnic comparison across ethnic backgrounds is lacking. In the second chapter, we integrated 1349 HCC genomes from five Asian and/or European cohorts and identified a large number of novel drivers (n=29) (e.g. FRG1). Many of these novel drivers are infrequent tumor suppressor genes (TSGs) and tend to enrich in several important pathways including the chromatin remodeling pathway. Novel drivers including PBRM1 and KMT2D often occur in later stages of tumorigenesis indicating their potential roles in driving tumor progression. In the third chapter, in order to understand ethnic differences in HCC, we conducted a systematic comparison across the Asian and European HCCs using the data from the The Cancer Genome Atlas (TCGA) database. We found higher genomic instability in Asians with a series of molecular events ranging from driver genes to immune profiles segregating distinctively between the two ethnic backgrounds. Most strikingly, multiple Asian enriched genomic alterations in particular chromosome 16 deletion, lead to a clinically aggressive RNA subgroup unique to Asians. By integrating information across multiple layers, we found that integrative survival models predict patient prognosis much better in Asians, suggesting a better chance to conduct a precision medicine program in Asia. Taken together, we performed a comprehensive integrative analysis of HCC genomes and uncovered remarkable ethnic differences between Asians and Europeans. In the fourth chapter of the thesis, leveraging the multi-region data of an Asian cohort, PLANET, variable level of intra-tumor heterogeneity (ITH) was found in both genomes and transcriptomes of HCC. Strikingly, we found multiple RNA subtypes within a single patient in the PLANET cohort which might be one reason for the poor treatment response in HCC. Integrative survival analysis highlighted the important roles of DNA and RNA ITH in predicting progression-free patient survival. Taken together, we have drawn a comprehensive landscape of ITH across a prospective cohort for HCC.Doctor of Philosoph

    Cell surface nucleolin is a novel ADAMTS5 receptor mediating endothelial cell apoptosis

    No full text
    A Disintegrin and Metalloproteinase with ThromboSpondin motif (ADAMTS) 5 functions as an anti-angiogenic and anti-cancer protein independent of its metalloproteinase activity. Both full-length ADAMTS5 and TS5-p45, the autocatalytically cleaved C-terminal 45 kDa truncate of ADAMTS5, inhibits angiogenesis, and induces endothelial cell (EC) apoptosis. However, how ADAMTS5 triggers EC apoptosis remains unclear. This work shows that caspase-8 (Cas-8) and caspase-9 (Cas-9) are involved in TS5-p45-induced EC apoptosis. We identify cell surface nucleolin (NCL) as a novel high-affinity receptor for TS5-p45 in ECs, mediating TS5-p45's cell surface binding and pro-apoptotic function. We show that the central RNA-binding domain (RBD) of NCL is essential and sufficient for its binding to TS5-p45. Upon interacting with EC surface NCL, TS5-p45 is internalized through clathrin- and caveolin-dependent endocytosis and trafficked to the nucleus via late endosomes (LEs). We demonstrate that the nuclear trafficking of TS5-p45 is important for its pro-apoptotic activity as disruption of LE membrane integrity with an endosomolytic peptide suppressed both nuclear trafficking and pro-apoptotic activity of TS5-p45. Through cell surface biotinylation, we revealed that cell surface NCL shuttles extracellular TS5-p45 to the nucleus to mediate apoptosis. Furthermore, blocking the importin α1/ß1 receptor hindered the nuclear trafficking of TS5-p45, suggesting the involvement of the nuclear importing machinery for this nuclear translocation. RNA-seq identified many apoptosis-related genes that are differentially expressed at least two-fold in TS5-p45-treated ECs, with 10 of them qRT-PCR-validated and at least 5 of these genes potentially contributing to TS5-p45-NCL-induced apoptosis. Altogether, our work identifies NCL as a novel cell surface receptor for ADAMTS5 and demonstrates the critical role of NCL-mediated internalization and nuclear trafficking for ADAMTS5-induced EC apoptosis. These findings reveal novel mechanistic insights of the secreted metalloproteinase ADAMTS5 in angiogenesis inhibition.Published versionThis work was supported by a grant awarded from the Singapore Ministry of Education to Ruowen Ge (MOE2014-T2-2-150). DCK was supported by the Singapore International Graduate Award from the Agency for Science, Technology & Research and the National University of Singapore

    Characteristics and predictors of chronic kidney disease in children with myelomeningocele: a nationwide cohort study

    No full text
    Background: Myelomeningocele (MMC) is highly prevalent in developing countries, and MMC-related neurogenic bladder is an important cause of childhood chronic kidney disease (CKD). This nationwide study aimed to evaluate demographic and clinical features of pediatric patients with MMC in Turkey and risk factors associated with CKD stage 5. Methods: Data from children aged 0–19 years old, living with MMC in 2022, were retrospectively collected from 27 pediatric nephrology centers. Patients > 1 year of age without pre-existing kidney abnormalities were divided into five groups according to eGFR; CKD stages 1–5. Patients on dialysis, kidney transplant recipients, and those with eGFR < 15 ml/min/1.73 m2 but not on kidney replacement therapy at time of study constituted the CKD stage 5 group. Results: A total of 911 (57.8% female) patients were enrolled, most of whom were expectantly managed. Stages 1–4 CKD were found in 34.3%, 4.2%, 4.1%, and 2.4%, respectively. CKD stage 5 was observed in 5.3% of patients at median 13 years old (range 2–18 years). Current age, age at first abnormal DMSA scan, moderate-to-severe trabeculated bladder on US and/or VCUG, and VUR history were independent risk factors for development of CKD stage 5 (OR 0.752; 95%; CI 0.658–0.859; p < 0.001; OR 1.187; 95% CI 1.031–1.367; p = 0.017; OR 10.031; 95% CI 2.210–45.544; p = 0.003; OR 2.722; 95% CI 1.215–6.102; p = 0.015, respectively). Only eight CKD stage 5 patients underwent surgery related to a hostile bladder between 1 and 15 years old. Conclusion: MMC-related CKD is common in childhood in Turkey. A proactive approach to neurogenic bladder management and early protective surgery in selected cases where conservative treatment has failed should be implemented to prevent progressive kidney failure in the pediatric MMC population in our country. Graphical abstract: [Figure not available: see fulltext.

    Multimodal molecular landscape of response to Y90-resin microsphere radioembolization followed by nivolumab for advanced hepatocellular carcinoma

    No full text
    Background Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown.Methods By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial.Results We found that higher tumor mutation burden, NCOR1 mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9+/CXCR3+ macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy.Conclusions This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC

    Multi-region sampling with paired sample sequencing analyses reveals sub-groups of patients with novel patient-specific dysregulation in Hepatocellular Carcinoma

    No full text
    Abstract Background Conventional differential expression (DE) testing compares the grouped mean value of tumour samples to the grouped mean value of the normal samples, and may miss out dysregulated genes in small subgroup of patients. This is especially so for highly heterogeneous cancer like Hepatocellular Carcinoma (HCC). Methods Using multi-region sampled RNA-seq data of 90 patients, we performed patient-specific differential expression testing, together with the patients’ matched adjacent normal samples. Results Comparing the results from conventional DE analysis and patient-specific DE analyses, we show that the conventional DE analysis omits some genes due to high inter-individual variability present in both tumour and normal tissues. Dysregulated genes shared in small subgroup of patients were useful in stratifying patients, and presented differential prognosis. We also showed that the target genes of some of the current targeted agents used in HCC exhibited highly individualistic dysregulation pattern, which may explain the poor response rate. Discussion/conclusion Our results highlight the importance of identifying patient-specific DE genes, with its potential to provide clinically valuable insights into patient subgroups for applications in precision medicine

    Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in hepatocellular carcinoma: the PLANET study

    No full text
    Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for hepatocellular carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% of patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types.National Medical Research Council (NMRC)National Research Foundation (NRF)Published versionThis work is supported in part by the Singapore National Medical Research Council grants (TCR/015-NCC/2016, CIRG18may-0057l, NMRC/CSA-SI/0018/2017, and NMRC/ OFIRG/0064/2017) and the National Research Foundation, Singapore (NRF-NRFF2015-04). W.Z. is supported in part by the National Key R&D Program of China (2018YFC1406902 and 2018YFC0910400), the National Natural Science Foundation of China (31970566), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB17). H.Y. is supported by the National Natural Science Foundation of China (32000407)
    corecore