19,297 research outputs found
Resonance absolute quantum reflection at selected energies
The possibility of the resonance reflection (100 % at maximum) is revealed.
The corresponding exactly solvable models with the controllable numbers of
resonances, their positions and widths are presented.Comment: 5 pages, 2 figure
INCOME TAX EFFECTS ON BEEF COW REPLACEMENT STRATEGY
Livestock Production/Industries,
Evaluation of a manufacturing task support system using the Task Technology Fit Model
This paper presents an exploratory study of a Task Support System (TSS) supporting manufacturing task operations. The study investigated the degree to which a TSS, in use in a company, actually supports the task of the shop floor personnel. The approach has been to adopt the Task-Technology Fit (TTF) instrument to measure
the degree of fitness between the TSS and the associated task. The analysis gives an indication of the state of the TSS and the potential improvements that can be made. The study also shows that the instrument can be used as a foundation for the development of a hypermedia TSS and a benchmarking tool for a TSS
Recommendations for high intensity upper body exercise testing
Introduction: For given submaximal and maximal peak power outputs aerobic responses to upper body exercise are different to those for lower body exercise (Sawka, 1986: Exercise & Sport Sciences Reviews, 14, 175-211). However, much less is known regarding responses to exercise intensities at and around peak oxygen up take (VO2peak). Purpose: The purpose of this study was to determine the metabolic responses during arm crank ergometry (ACE) below, at and above peak oxygen uptake and to help establish exercise testing guidelines for high intensity upper body exercise. Methods: Following institutional ethical approval fourteen male students (Age 21.1, s = 6.1 years and 2.44 s=0.44 VO2peak) volunteered to take part in this study. Each participant exercised on a table mounted cycle ergometer (Monark 894E, Monark Exercise AB, Sweden). After habituation peak minute power (PMP) was calculated from an incremental test. Subsequently each participant completed four continuous work tests (CWT) to volitional exhaustion at 80%, 90%, 100% and 110% of PMP. All tests were completed at 70 revâmin-1 with a minimum of 48-h between tests and the order was counterbalanced. Each CWT was preceded by a 5 min warm-up, loaded with a mass corresponding to the participants 80% PMP for 20 s at minutes 2, 3 and 4. Oxygen uptake (VO2), respiratory exchange ratio (RER), heart rate (HR) and ratings of perceived exertion for the arms (local (RPEL) and cardiorespiratory strain (RPECR) were recorded at 1 min, 2 min and at volitional exhaustion. The EMG responses at three sites (flexor carpi ulnaris, biceps brachii and triceps brachii lateral) were recorded using double-differential (16-3000 Hz bandwidth, x300 gain), bipolar, active electrodes (MP-2A, Linton, Norfolk, UK). Electromyographic data were sampled at 1000 Hz and filtered using a 20 to 500 Hz band-pass filter (MP150 Data Acquisition and AcqKnowledge 4.0, Biopac, Goleta, CA). The EMG signals for each muscle were root mean squared (RMS) with a 500-ms sample window. The signal was then normalised, prior to each CWT, as a percentage of the mean of 3 sets of 10 duty cycles completed during the warm-up (see above) when the participants 80% PMP for 20 s was applied. Time to exhaustion (Tlim) was recorded as the performance outcome measure. Data for Tlim were analysed using one-way analysis of variance. Differences in EMG, VO2, RER, HR, RPEL and RPECR were analysed using separate two-way analysis of variance with repeated measures (trial x time). All analyses were performed using the Statistical Package for Social Sciences ( 17.0; SPSS Inc., Chicago, IL). Individual differences in means were located using Bonferroni post-hoc correction. Significance was accepted at P < 0.05. Results: As resistive load increased Tlim decreased (611 s=194, 397 s=99, 268 s=90, 206 s=67s, respectively; P < 0.001, ES = 0.625). Post-hoc analysis revealed that Tlim using 80%PMP was longer than for 90%, 100% and 110% PMP trials (P < 0.001) and 90% was longer than both 100% and 110% PMP trials (P = 0.079, P = 0.001). At exhaustion VO2 was similar across trials (P = 0.413, ES = 0.053), although 80% PMP VO2 tended to be less (2.10 s=0.32 l·min-1) than for 90% (2.29 s=0.37), 100% (2.33 s=0.49) and 110% (2.26 s=0.34). Also, 80% PMP VO2 was less than VO2peak (P = 0.013). There were differences in RER at Tlim (P < 0.001, ES = 0.593) with values increasing with % PMP (1.15 s=0.07, 1.26 s=0.07, 1.36 s=0.10, 1.40 s=0.09, respectively). There were no differences across trials for HR at Tlim (~173 (12); P = 0.834, ES = 0.016) and HR was proportional to %PMP at 1 min, and 2 min. For flexor carpi ulnaris there was an increase in activation as exercise intensity increased (P < 0.001, ES = 0.245). There were a similar responses for biceps brachii and triceps brachii demonstrating an increase in activation with exercise intensity (P <0.001, ES = 0.137, P < 0.001, ES = 0.163, respectively). No differences for RPEL and RPECR were observed at Tlim. Discussion: There was a clear response of Tlim with intensity as expected for lower body exercise (Hill et al., 2002: Medicine and Science in Sports and Exercise, 34(4), 709-714). Despite differences in Tlim across exercise intensities VO2, HR and RPE were similar at exhaustion indicating a functional cardiorespiratory maximum had been reached. As indicated by the RER an increased activation of the anaerobic metabolism with greater exercise intensities (100% and 110%) is likely and therefore this may represent a greater anaerobic component at these two intensities. The increase in EMG activity with intensity could indicate an increase activity with an increase in exercise intensity. Conclusion: It is recommended that due to the combination of muscle activation, oxygen uptake and Tlim that an exercise intensity of 90% or 100% of PMP could be used for high intensity upper body exercise testing
The influence of 6 weeks of maximal eccentric plantarflexor training on muscle-tendon mechanics
Resistance training can influence muscle-tendon properties including strength, flexibility, stretch tolerance and muscle-tendon stiffness; however the specific influence of eccentric-only training is unknown. Therefore, the aims of the present study were to examine the effects of a 6-week maximal eccentric resistance training programme on isometric plantarflexor moment (MVC), dorsiflexion range of motion (ROM), stretch tolerance (peak passive moment), muscle and tendon stiffness and running economy. Thirteen recreationally active men (age = 20.0 ± 0.9 yr, mass = 75.9 ± 8.5 kg, height = 1.8 ± 0.1 m) volunteered for the study after giving written informed consent; ethical approval was granted from the University of Northampton. Training was performed twice weekly for six weeks and consisted of 5 sets of 12 repetitions of 3-s maximal eccentric contractions at 10°âąs-1 from 20° plantarflexion to 10° dorsiflexion. Maximal isometric plantarflexor moment, dorsiflexion ROM, stretch tolerance, and muscle, tendon and muscle-tendon unit (MTU) stiffness were measured using isokinetic dynamometry, real-time ultrasound and 3D motion analyses before and after the training. Running economy (VO2) was determined at a running speed equating to 70%VO2max using online gas analysis. Repeated measures t-tests were used to determine significant differences between pre- and post-training data, significance accepted at p0.05). Analysis of ultrasound data revealed a significant decrease in muscle stiffness (20.6%; p0.05). While the training-induced increase in plantarflexor strength was expected, the substantial increases in ROM, stretch tolerance and tendon stiffness, and the reduction in passive muscle stiffness, were important and novel findings. Interestingly, when measured during passive stretch, MTU stiffness remained unchanged while tendon stiffness increased and muscle stiffness decreased. These disparate findings have clear implications for testing methodologies, and indicate that imaging techniques must be utilised in order to examine the effects of interventions on specific tissues. As the training clearly enhanced the capacity of the muscle to tolerate both tissue loading and deformation, which are commonly associated with muscle strain injury, these data have clear implications for both muscular performance and injury risk
Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved spacetime
We derive for a pair of operators on a symplectic space which are adjoints of
each other with respect to the symplectic form (that is, they are sympletically
adjoint) that, if they are bounded for some scalar product on the symplectic
space dominating the symplectic form, then they are bounded with respect to a
one-parametric family of scalar products canonically associated with the
initially given one, among them being its ``purification''. As a typical
example we consider a scalar field on a globally hyperbolic spacetime governed
by the Klein-Gordon equation; the classical system is described by a symplectic
space and the temporal evolution by symplectomorphisms (which are
symplectically adjoint to their inverses). A natural scalar product is that
inducing the classical energy norm, and an application of the above result
yields that its ``purification'' induces on the one-particle space of the
quantized system a topology which coincides with that given by the two-point
functions of quasifree Hadamard states. These findings will be shown to lead to
new results concerning the structure of the local (von Neumann)
observable-algebras in representations of quasifree Hadamard states of the
Klein-Gordon field in an arbitrary globally hyperbolic spacetime, such as local
definiteness, local primarity and Haag-duality (and also split- and type
III_1-properties). A brief review of this circle of notions, as well as of
properties of Hadamard states, forms part of the article.Comment: 42 pages, LaTeX. The Def. 3.3 was incomplete and this has been
corrected. Several misprints have been removed. All results and proofs remain
unchange
The influence of acute variable resistance loading on subsequent free-weight maximal squat performance
Elastic bands attached to a loaded barbell during a squat exercise create a variable resistance (VR), thus changing the mechanical loading and stress placed through the musculoskeletal system. Preconditioning the neuromuscular system using near-maximal or maximal voluntary contractions (MVC) can induce a phenomenon known as post-activation potentiation (PAP) to enhance performance to âsupramaximalâ levels. However, the potentiating effects of VR on subsequent free-weight resistance (FWR) squat performance have not been examined. Thus, the aim of the present study was to examine the influence of VR exercise using elastic bands on subsequent FWR squat performance. Sixteen recreationally active men (age = 26.0 ± 7.8 yr, height = 1.7 ± 0.2 m, mass 82.6 ± 12.7 kg) experienced in squatting (>3yr) volunteered for the study after giving written informed consent; ethical approval was granted from the University of Northampton. Subjectsâ 1-RM were determined then on two subsequent days either a 3-RM FWR (control) or a 3-RM VR (experimental) squat exercise was performed at 85% 1-RM (35% of the load generated from band tension in the VR condition). Five minutes later, motion analysis recorded knee joint kinematics during a subsequent FWR 1-RM squat, with vastus medialis, vastus lateralis, rectus femoris and semitendinosus electromyograms (EMG) simultaneously recorded. Paired t-tests were used to determine significance, accepted at p0.05) or EMG amplitude (5.9%; p>0.05) occurred. No subjects increased 1-RM in the FWR condition, however 13 of 16 (81%) increased 1-RM by ~10% following VR. Preconditioning the neuromuscular system using VR significantly increased 1-RM without changes in knee extensor muscle activity or knee flexion angle, however eccentric and concentric velocities were reduced. Thus, VR can potentiate the neuromuscular system to enhance subsequent maximal lifting performance. The lack of change in EMG suggests that changes in muscle activity were small or non-existent, which may be explained by force-velocity effects (slower movement = larger forces). Alternatively a greater activation of hip musculature (not measured in the present study) may allow a greater total lower limb force to be developed. Regardless, as 1-RM increased greater lower-limb loading occurred, thus VR potentiated the neuromuscular system and could enhance training stimuli
Postgraduate medical ultrasound learner and practice educator perceptions and experiences of academy model clinical ultrasound training in Scotland.
Introduction: The newly introduced National Ultrasound Training Programme within the NHS Scotland Academy provides an alternative clinical learning environment for postgraduate medical ultrasound learners. Learners during academic year 2022/23 were supported with up to five weeks of clinical education within the NHS Scotland Academy, as an alternative to their local Health Board. This study explores the perceptions and experiences of the first cohort of learners and their practice educators.Methods: An interview guide was developed comprising questions to explore learners and practice educator experiences and perceptions of the National Ultrasound Training Programme. Ten semi-structured interviews were conducted (Learners n = 5 and Practice Educators n = 5). Thematic analysis was performed by two independent researchers following an established six-stage process.Results: Three themes emerged:1. Importance of the Clinical learning environment, 2. Relationships and 3. Skills and confidence. Organisational challenges within the NHS Health Boards pose barriers to Learners and Practice Educators supporting clinical education. Learners benefitted from both the clinical learning environments while practice educators recognise the advantage of alternative clinical education for their Learner and wider ultrasound services. Further collaboration to capitalise on knowledge exchange was identified for enhancement.Conclusion: The NHS Scotland Academy can play a pivotal role in delivering learner-centred, protected clinical education as an adjunct to traditional models of practice education.Implications for practice: Employers and Practice Educators must identify and acknowledge barriers to postgraduate medical ultrasound education. Protected learning time, recognising roles of Learners and Educators and a supportive clinical learning environment are paramount. Learner-centred best practice clinical education can be successfully delivered within the NHS Scotland academy as an adjunct to acute health board clinical education and adopting a collaborative approach will provide enhancements for stakeholders
Limits of sensing temporal concentration changes by single cells
Berg and Purcell [Biophys. J. 20, 193 (1977)] calculated how the accuracy of
concentration sensing by single-celled organisms is limited by noise from the
small number of counted molecules. Here we generalize their results to the
sensing of concentration ramps, which is often the biologically relevant
situation (e.g. during bacterial chemotaxis). We calculate lower bounds on the
uncertainty of ramp sensing by three measurement devices: a single receptor, an
absorbing sphere, and a monitoring sphere. We contrast two strategies, simple
linear regression of the input signal versus maximum likelihood estimation, and
show that the latter can be twice as accurate as the former. Finally, we
consider biological implementations of these two strategies, and identify
possible signatures that maximum likelihood estimation is implemented by real
biological systems.Comment: 11 pages, 2 figure
Cellular Ability to Sense Spatial Gradients in the Presence of Multiple Competitive Ligands
Many eukaryotic and prokaryotic cells can exhibit remarkable sensing ability
under small gradient of chemical compound. In this study, we approach this
phenomenon by considering the contribution of multiple ligands to the chemical
kinetics within Michaelis-Menten model. This work was inspired by the recent
theoretical findings from Bo Hu et al. [Phys. Rev. Lett. 105, 048104 (2010)],
our treatment with practical binding energies and chemical potential provides
the results which are consistent with experimental observations.Comment: 5 pages, 4 figure
- âŠ