3 research outputs found

    Are digital services the right solution for empowering smallholder farmers? A perspective enlightened by COVID-19 experiences to inform smart IPM.

    Get PDF
    Open Access JournalThe COVID-19 pandemic, surprised many through its impact on the food systems, resulting in collapses in the food production value chains and in the integrated pest disease management sector with fatal outcomes in many places. However, the impact of COVID-19 and the digital experience perspective on Integrating Pest Management (IPM) is still yet to be understood. In Africa, the impact was devastating, mostly for the vulnerable smallholder farm households, who were rendered unable to access markets to purchase inputs and sell their produce during the lockdown period. By using a holistic approach the paper reviews different Information and Communications Technologies (ICTs), digitalization, and how this enhanced the capacity of smallholder farmers resilient, and inform their smart-IPM practices in order to improve food systems' amidst climate change during and in the post-COVID-19 period. Different digital modalities were adopted to ensure continuous food production, access to inputs and finances, and selling surplus production among others. This was largely possible by using ICTs to deliver these needed services digitally. The study shares contributions and capacity perspectives of ICTs for empowering smallholder farmers to boost the resilience of their food systems based on COVID-19 successful experiences. Thus digital solutions must be embraced in the delivery of extension service on pest management and good agronomic practices, money transfers for purchasing inputs, receiving payment for sold farm produce, and markets information exchange. These are key avenues through which digital solutions strategically supported smallholder-based food systems through the pandemic

    Determinants for deployment of climate-smart integrated pest management practices: a meta-analysis approach

    Get PDF
    Following the development and dissemination of new climate-smart agricultural technologies to farmers globally, there has been an increase in the number of socio-economic studies on the adoption of climate-smart integrated pests’ management (CS-IPM) technologies over the years. In this study, we review empirical evidence on adoption determinants of CS-IPM technologies and identify possible science-policy interfaces. Generally, our review shows that socioeconomic and institutional factors are influential in shaping CS-IPM adoption decisions of farmers. More specifically, income was found to positively influence the adoption of CS-IPM technologies while land size owned influences CS-IPM adoption negatively. Registered land tenure (registered secure rights) positively influences CS-IPM technologies’ adoption, implying that efficient land markets that enable competitive and fair distribution and access to land, more so by the vulnerable but efficient smallholder producers do indeed increase the adoption of CS-IPMs technologies. Social capital, achieved via farmers’ organizations is also central in fostering CS-IPM technologies’ adoption, just as markets reforms that minimize market failures regarding access to credit, labor, and agricultural information, which could indirectly hinder farmers’ use of CS-IPM practices. Functional extension systems that improve farmers’ awareness of CS-IPM do also improve CS-IPM technologies’ adoption. However, the adoption of CS-IPM technologies in Ghana and Benin is slow-paced because of factors like lack of access to farm inputs that facilitate uptake of these technologies, lack of credit facilities, and limited extension services among others. Interestingly, our review confirms that CS-IPM technologies do indeed reduce and minimize the intensity of pesticide usage and foster ecosystem (environmental and human) health. Therefore, this review unearths strategic determinants of CS-IPM adoption and makes fundamental guidance around climate-smart innovations transfer and environmental policies that should be prioritized to curb environmental pollution and ensure agricultural ecosystems’ sustainability

    Impact of CS-IPM on key social welfare aspects of smallholder farmers' livelihoods

    Get PDF
    Open Access JournalAll stakeholders, especially households that depend on agriculture, must come up with every avenue available to improve farm productivity in order to raise yields due to the constraints posed by climate change on food production systems. Sufficient increments in yields will address the challenges of food insecurity and malnutrition among vulnerable households, especially smallholder ones. Yield increases can be achieved sustainably through the deployment of various Climate Smart Integrated Pest Management (CS-IPM) practices, including good agronomic practices. Therefore, CS-IPM practices could be essential in ensuring better household welfare, including food security and nutrition. With such impact empirically documented, appropriate policy guidance can be realized in favor of CS-IPM practices at scale, thus helping to achieve sustainable food security and food systems. However, to this end, there is yet limited evidence on the real impact of CS-IPM practices on the various core social welfare household parameters, for instance, food security, household incomes, gender roles, and nutrition, among others. We contribute to this body of literature in this paper by reviewing various empirical evidence that analyzes the impact of respective CS-IPM practices on key social welfare aspects of smallholder farm households in developing countries around the world. The review finds that CS-IPM practices do increase households’ adaptation to climate change, thus enhancing soil and crop productivity, thereby ensuring food and nutrition security, as well as increasing market participation of CS-IPM adopters, thus leading to increased household incomes, asset accumulation, and subsequently better household food and nutrition security via direct own-farm produce consumption and market purchases using income. CS-IPM practices also enhance access to climate-related information, reduce greenhouse gas emissions, conserve biodiversity, and enhance dietary diversity through improved crop and livestock varieties and also reduce variable farm production costs. Therefore, there would be multiple welfare gains if CS-IPM practices were scaled up
    corecore