1,093 research outputs found

    Local Energy Gap in Deformed Carbon Nanotubes

    Full text link
    The effects of graphite surface geometrical deformation on the dynamics of conducting electrons are investigated theoretically. The analysis is performed within the framework of a deformation-induced gauge field and corresponding deformation-induced magnetic field. It is shown that the latter gives a local energy gap along the axis of a deformed nanotube. We compare our energy gap results with experimental data on energy gaps in nanotubes and peapods. We also discuss the mixing of two Fermi points and construct a general model of low energy dynamics, including a short-range deformation of the graphite sheet. This model is equivalent to the Weyl equation in {\it U}(1) Abelian and {\it SU}(2) non-Abelian deformation-induced gauge fields.Comment: 18 pages, 4 figures, corrected typos, added references, improved presentation (v4, published version

    Role of Interlayer Coupling on the Evolution of Band Edges in Few-Layer Phosphorene

    Full text link
    Using first-principles calculations, we have investigated the evolution of band-edges in few-layer phosphorene as a function of the number of P layers. Our results predict that monolayer phosphorene is an indirect band gap semiconductor and its valence band edge is extremely sensitive to strain. Its band gap could undergo an indirect-to-direct transition under a lattice expansion as small as 1% along zigzag direction. A semi-empirical interlayer coupling model is proposed, which can well reproduce the evolution of valence band-edges obtained by first-principles calculations. We conclude that the interlayer coupling plays a dominated role in the evolution of the band-edges via decreasing both band gap and carrier effective masses with the increase of phosphorene thickness. A scrutiny of the orbital-decomposed band structure provides a better understanding of the upward shift of valence band maximum surpassing that of conduction band minimum.Comment: 25 pages, 9 figure

    Statics and dynamics of phase segregation in multicomponent fermion gas

    Get PDF
    We investigate the statics and dynamics of spatial phase segregation process of a mixture of fermion atoms in a harmonic trap using the density functional theory. The kinetic energy of the fermion gas is written in terms of the density and its gradients. Several cases have been studied by neglecting the gradient terms (the Thomas-Fermi limit) which are then compared with the Monte-Carlo results using the full gradient corrected kinetic energy. A linear instability analysis has been performed using the random-phase approximation. Near the onset of instability, the fastest unstable mode for spinodal decomposition is found to occur at q=0q=0. However, in the strong coupling limit, many more modes with qKFq\approx K_F decay with comparable time scales.Comment: 14 figure

    First-principles study of phenyl ethylene oligomers as current-switch

    Full text link
    We use a self-consistent method to study the distinct current-switch of 22^{'}-amino-4-ethynylphenyl-4'-ethynylphenyl-5'-nitro-1-benzenethiol, from the first-principles calculations. The numerical results are in accord with the early experiment [Reed et al., Sci. Am. \textbf{282}, 86 (2000)]. To further investigate the transport mechanism, we calculate the switching behavior of p-terphenyl with the rotations of the middle ring as well. We also study the effect of hydrogen atom substituting one ending sulfur atom on the transport and find that the asymmetry of I-V curves appears and the switch effect still lies in both the positive and negative bias range.Comment: 6 pages, 6 figure
    corecore