37 research outputs found

    Center-to-Limb Variation of Radio Emissions from Thermal-Rich and Thermal-Poor Solar Flares

    Full text link
    A statistical analysis of radio flare events was performed by using the event list of Nobeyama Radioheliograph in 1996-2009. We examined center-to-limb variations of 17GHz and 34GHz flux by dividing the flare events into different groups with respect to the 'thermal plasma richness' (ratio of the peak flux of soft X-ray to non-thermal radio emissions) and the duration of radio bursts. It is found that peak flux of 17 and 34GHz tend to be higher toward the limb for thermal-rich flares with short durations. We propose that the thermal-rich flares, which are supposed to be associated with an efficient precipitation of high energy particles into the chromosphere, have a pitch angle distribution of non-thermal electrons with a higher population along the flare loop.Comment: 12 pages, 5 figure

    Lost and found sunquake in the 6 September 2011 flare caused by beam electrons

    Get PDF
    The active region NOAA 11283 produced two X-class flares on 6 and 7 September 2011 that have been well studied by many authors. The X2.1 class flare occurred on September 6, 2011 and was associated with the first of two homologous white light flares produced by this region, but no sunquake was found with it despite the one being detected in the second flare of 7 September 2011. In this paper we present the first observation of a sunquake for the 6 September 2011 flare detected via statistical significance analysis of egression power and verified via directional holography and time-distance diagram. The surface wavefront exhibits directional preference in the north-west direction We interpret this sunquake and the associated flare emission with a combination of a radiative hydrodynamic model of a flaring atmosphere heated by electron beam and a hydrodynamic model of acoustic wave generation in the solar interior generated by a supersonic shock. The hydrodynamic model of the flaring atmosphere produces a hydrodynamic shock travelling with supersonic velocities toward the photosphere and beneath. For the first time we derive velocities (up to 140 km s-1) and onset time (about 50 s after flare onset) of the shock deposition at given depths of the interior. The shock parameters are confirmed by the radiative signatures in hard X-rays and white light emission observed from this flare. The shock propagation in the interior beneath the flare is found to generate acoustic waves elongated in the direction of shock propagation, that results in an anisotropic wavefront seen on the solar surface. Matching the detected seismic signatures on the solar surface with the acoustic wave front model derived for the simulated shock velocities, we infer that the shock has to be deposited under an angle of about 30° to the local solar vertical. Hence, the improved seismic detection technique combined with the double hydrodynamic model reported in this study opens new perspectives for observation and interpretation of seismic signatures in solar flares

    Study of Time Evolution of Thermal and Non-Thermal Emission from an M-Class Solar Flare

    Get PDF
    We conduct a wide-band X-ray spectral analysis in the energy range of 1.5-100 keV to study the time evolution of the M7.6 class flare of 2016 July 23, with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft. With the combination of MinXSS for soft X-rays and RHESSI for hard X-rays, a non-thermal component and three-temperature multi-thermal component -- "cool" (TT \approx 3 MK), "hot" (TT \approx 15 MK), and "super-hot" (TT \approx 30 MK) -- were measured simultaneously. In addition, we successfully obtained the spectral evolution of the multi-thermal and non-thermal components with a 10 s cadence, which corresponds to the Alfv\'en time scale in the solar corona. We find that the emission measures of the cool and hot thermal components are drastically increasing more than hundreds of times and the super-hot thermal component is gradually appearing after the peak of the non-thermal emission. We also study the microwave spectra obtained by the Nobeyama Radio Polarimeters (NoRP), and we find that there is continuous gyro-synchrotron emission from mildly relativistic non-thermal electrons. In addition, we conducted a differential emission measure (DEM) analysis by using Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and determine that the DEM of cool plasma increases within the flaring loop. We find that the cool and hot plasma components are associated with chromospheric evaporation. The super-hot plasma component could be explained by the thermalization of the non-thermal electrons trapped in the flaring loop.Comment: 20 pages, 12 figures, 1 tables. Accepted for publication in Ap

    Update of the Spectro-polarimeter on the Domeless Solar Telescope at Hida Observatory

    Get PDF
    A new spectro-polarimeter was installed on the Domeless Solar Telescope at Hida Observatory. Major update s from the previous system are as follows; a super achromatic dual beam polarimeter, communication interface between telescope and data acquisition PC for image scanning , flexible setup for observing a wavelength range of 500-1100 nm, and a high sensitivity infrared camera. The field of view of the system is 120arcsec along the slit of spectrograph, and with a slit width of 0.64 arcsec, the system can achieve a sensitivity of 3x10⁻⁴ in a few second in on disk observation. Details of the instruments, the data reduction flow and initial results obtained by the new system are presented. At the end, future prospect is also discussed

    Spicule Dynamics over Plage Region

    Full text link
    We studied spicular jets over a plage area and derived their dynamic characteristics using Hinode Solar Optical Telescope (SOT) high-resolution images. The target plage region was near the west limb of the solar disk. This location permitted us to study the dynamics of spicular jets without the overlapping effect of spicular structures along the line of sight. In this work, to increase the ease with which we can identify spicules on the disk, we applied the image processing method `MadMax' developed by Koutchmy et al. (1989). It enhances fine, slender structures (like jets), over a diffuse background. We identified 169 spicules over the target plage. This sample permits us to derive statistically reliable results regarding spicular dynamics. The properties of plage spicules can be summarized as follows: (1) In a plage area, we clearly identified spicular jet features. (2) They were shorter in length than the quiet region limb spicules, and followed ballistic motion under constant deceleration. (3) The majority (80%) of the plage spicules showed the cycle of rise and retreat, while 10% of them faded out without a complete retreat phase. (4) The deceleration of the spicule was proportional to the velocity of ejection (i.e. the initial velocity).Comment: 12 pages, 9 figures, accepted for publication in PAS
    corecore