3,937 research outputs found

    Analysis of fluctuations in the magnetic field obtained by IMP-2

    Get PDF
    Interplanetary magnetic field fluctuations from IMP 2 satellit

    Demodulation of amplitude modulated RF WAVES in a plasma at resonance

    Get PDF
    Demodulation of amplitude modulated radio frequency waves in plasma at resonanc

    Recent Progress in Spin Glasses

    Full text link
    We review recent findings on spin glass models. Both the equilibrium properties and the dynamic properties are covered. We focus on progress in theoretical, in particular numerical, studies, while its relationship to real magnetic materials is also mentioned.Comment: Chapter 6 in ``Frustrated Spin Systems'' edited by H.T.Die

    Application of a continous time cluster algorithm to the Two-dimensional Random Quantum Ising Ferromagnet

    Full text link
    A cluster algorithm formulated in continuous (imaginary) time is presented for Ising models in a transverse field. It works directly with an infinite number of time-slices in the imaginary time direction, avoiding the necessity to take this limit explicitly. The algorithm is tested at the zero-temperature critical point of the pure two-dimensional (2d) transverse Ising model. Then it is applied to the 2d Ising ferromagnet with random bonds and transverse fields, for which the phase diagram is determined. Finite size scaling at the quantum critical point as well as the study of the quantum Griffiths-McCoy phase indicate that the dynamical critical exponent is infinite as in 1d.Comment: 4 pages RevTeX, 3 eps-figures include

    New technique for producing a strong multi-pole magnet

    Get PDF
    A new technique for producing strong multipole magnet is developed. A cylindrical magnet oriented with its easy axis of magnetization perpendicular to the cylinder axis is magnetized by a multipole magnetizer. This procedure results in a multipole magnet with a flux density almost sixty percent greater than the flux density produced by a multi-pole magnet which is not oriented. The technique is especially effective for producing small cylindrical magnets with many poles and agreement of a theoretical analysis with experimental results is very good, with deviations of no more than a few percent.</p

    Quantum spin glass and the dipolar interaction

    Full text link
    Systems in which the dipolar energy dominates the magnetic interaction, and the crystal field generates strong anisotropy favoring the longitudinal interaction terms, are considered. Such systems in external magnetic field are expected to be a good experimental realization of the transverse field Ising model. With random interactions this model yields a spin glass to paramagnet phase transition as function of the transverse field. Here we show that the off-diagonal dipolar interaction, although effectively reduced, destroys the spin glass order at any finite transverse field. Moreover, the resulting correlation length is shown to be small near the crossover to the paramagnetic phase, in agreement with the behavior of the nonlinear susceptibility in the experiments on \LHx. Thus, we argue that the in these experiments a cross-over to the paramagnetic phase, and not quantum criticality, was observed.Comment: To appear in Phys. Rev. Let

    Numerical renormalization group study of random transverse Ising models in one and two space dimensions

    Full text link
    The quantum critical behavior and the Griffiths-McCoy singularities of random quantum Ising ferromagnets are studied by applying a numerical implementation of the Ma-Dasgupta-Hu renormalization group scheme. We check the procedure for the analytically tractable one-dimensional case and apply our code to the quasi-one-dimensional double chain. For the latter we obtain identical critical exponents as for the simple chain implying the same universality class. Then we apply the method to the two-dimensional case for which we get estimates for the exponents that are compatible with a recent study in the same spirit.Comment: 10 pages LaTeX, eps-figures and PTP-macros included. Proceedings of the ICCP5, Kanazawa (Japan), 199

    Spin-chirality decoupling in the one-dimensional Heisenberg spin glass with long-range power-law interactions

    Full text link
    We study the issue of the spin-chirality decoupling/coupling in the ordering of the Heisenberg spin glass by performing large-scale Monte Carlo simulations on a one-dimensional Heisenberg spin-glass model with a long-range power-law interaction up to large system sizes. We find that the spin-chirality decoupling occurs for an intermediate range of the power-law exponent. Implications to the corresponding dd-dimensional short-range model is discussed.Comment: 5 pages, 4 figures, to appear in Physical Review Letter

    Monte Carlo studies of the chiral and spin orderings of the three-dimensional Heisenberg spin glass

    Full text link
    The nature of the ordering of the three-dimensional isotropic Heisenberg spin glass with nearest-neighbor random Gaussian coupling is studied by extensive Monte Carlo simulations. Several independent physical quantities are measured both for the spin and for the chirality, including the correlation-length ratio, the Binder ratio, the glass order parameter, the overlap distribution function and the non-self-averageness parameter. By controlling the effect of the correction-to-scaling, we have obtained a numerical evidence for the occurrence of successive chiral-glass and spin-glass transitions at nonzero temperatures, T_{CG} > T_{SG} > 0. Hence, the spin and the chirality are decoupled in the ordering of the model. The chiral-glass exponents are estimated to be \nu_{CG}=1.4+-0.2 and \eta_{CG}=0.6+-0.2, indicating that the chiral-glass transition lies in a universality class different from that of the Ising spin glass. The possibility that the spin and chiral sectors undergo a simultaneous Kosterlitz-Thouless-type transition is ruled out. The chiral-glass state turns out to be non-self-averaging, possibly accompanying a one-step-like peculiar replica-symmetry breaking. Implications to the chirality scenario of experimental spin-glass transitions are discussed.Comment: 20 pages, 24 figures. The Chi^2-analysis of the transition point has been added with new Fig.12. Some references also adde
    • …
    corecore