1,793 research outputs found

    Electrochemical reaction engineering of polymer electrolyte fuel cell

    Get PDF
    Although fuel cells can be considered as a type of reactor, methods of kinetic analysis and reactor modeling from the viewpoint of chemical reaction engineering have not yet been established. The rate of an electrochemical reaction is a function of concentration, temperature, and interfacial potential difference (or electromotive force). This study examined the cathode reaction in a polymer electrolyte fuel cell, in which oxygen and protons react over platinum in the catalyst layer (CL). The effects of the oxygen partial pressure and the cathode electromotive force on the reaction rate were assessed. Resistance to proton transport increases the electromotive force and reducing the reaction rate. It was established that the effectiveness factor of the cathode CL is determined by competition between the reaction and mass transport of oxygen and protons. Two dimensionless moduli that govern the cathode behavior are proposed as a means of depicting the processes in the cell

    Excitation of Giant Monopole Resonance in 208^{208}Pb and 116^{116}Sn Using Inelastic Deuteron Scattering

    Get PDF
    The excitation of the isoscalar giant monopole resonance (ISGMR) in 116^{116}Sn and 208^{208}Pb has been investigated using small-angle (including 00^\circ) inelastic scattering of 100 MeV/u deuteron and multipole-decomposition analysis (MDA). The extracted strength distributions agree well with those from inelastic scattering of 100 MeV/u α\alpha particles. These measurements establish deuteron inelastic scattering at Ed_d \sim 100 MeV/u as a suitable probe for extraction of the ISGMR strength with MDA, making feasible the investigation of this resonance in radioactive isotopes in inverse kinematics.Comment: 5 pages, 4 figures. To be published in Phys. Lett.

    Uncomputably noisy ergodic limits

    Get PDF
    V'yugin has shown that there are a computable shift-invariant measure on Cantor space and a simple function f such that there is no computable bound on the rate of convergence of the ergodic averages A_n f. Here it is shown that in fact one can construct an example with the property that there is no computable bound on the complexity of the limit; that is, there is no computable bound on how complex a simple function needs to be to approximate the limit to within a given epsilon

    Isotopic dependence of the giant monopole resonance in the even-A ^{112-124}Sn isotopes and the asymmetry term in nuclear incompressibility

    Full text link
    The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112--124) with inelastic scattering of 400-MeV α\alpha particles in the angular range 00^\circ--8.58.5^\circ. We find that the experimentally-observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208^{208}Pb and 90^{90}Zr very well. From the GMR data, a value of Kτ=550±100K_{\tau} = -550 \pm 100 MeV is obtained for the asymmetry-term in the nuclear incompressibility.Comment: Submitted to Physical Review Letters. 10 pages; 4 figure
    corecore