467 research outputs found

    Numerical study on Anderson transitions in three-dimensional disordered systems in random magnetic fields

    Full text link
    The Anderson transitions in a random magnetic field in three dimensions are investigated numerically. The critical behavior near the transition point is analyzed in detail by means of the transfer matrix method with high accuracy for systems both with and without an additional random scalar potential. We find the critical exponent ν\nu for the localization length to be 1.45±0.091.45 \pm 0.09 with a strong random scalar potential. Without it, the exponent is smaller but increases with the system sizes and extrapolates to the above value within the error bars. These results support the conventional classification of universality classes due to symmetry. Fractal dimensionality of the wave function at the critical point is also estimated by the equation-of-motion method.Comment: 9 pages, 3 figures, to appear in Annalen der Physi

    Conductance plateau transitions in quantum Hall wires with spatially correlated random magnetic fields

    Full text link
    Quantum transport properties in quantum Hall wires in the presence of spatially correlated disordered magnetic fields are investigated numerically. It is found that the correlation drastically changes the transport properties associated with the edge state, in contrast to the naive expectation that the correlation simply reduces the effect of disorder. In the presence of correlation, the separation between the successive conductance plateau transitions becomes larger than the bulk Landau level separation determined by the mean value of the disordered magnetic fields. The transition energies coincide with the Landau levels in an effective magnetic field stronger than the mean value of the disordered magnetic field. For a long wire, the strength of this effective magnetic field is of the order of the maximum value of the magnetic fields in the system. It is shown that the effective field is determined by a part where the stronger magnetic field region connects both edges of the wire.Comment: 7 pages, 10 figure

    Landau level broadening in graphene with long-range disorder -- Robustness of the n=0 level

    Full text link
    Broadening of the Landau levels in graphene and the associated quantum Hall plateau-to-plateau transition are investigated numerically. For correlated bond disorder, the graphene-specific n=0 Landau level of the Dirac fermions becomes anomalously sharp accompanied by the Hall transition exhibiting a fixed-point-like criticality. Similarly anomalous behavior for the n=0 Landau level is also shown to occur in correlated random magnetic fields, which suggests that the anomaly is generic to disorders that preserve the chiral symmetry.Comment: 4 pages, 5 figures, submitted to EP2DS-18 Conference proceeding

    Quantum transport properties of two-dimensional systems in disordered magnetic fields with a fixed sign

    Full text link
    Quantum transport in disordered magnetic fields is investigated numerically in two-dimensional systems. In particular, the case where the mean and the fluctuation of disordered magnetic fields are of the same order is considered. It is found that in the limit of weak disorder the conductivity exhibits a qualitatively different behavior from that in the conventional random magnetic fields with zero mean. The conductivity is estimated by the equation of motion method and by the two-terminal Landauer formula. It is demonstrated that the conductance stays on the order of e2/he^2/h even in the weak disorder limit. The present behavior can be interpreted in terms of the Drude formula. The Shubnikov-de Haas oscillation is also observed in the weak disorder regime.Comment: 6 pages, 7 figures, to appear in Phys. Rev.

    Chiral symmetry and fermion doubling in the zero-mode Landau levels of massless Dirac fermions with disorder

    Full text link
    The effect of disorder on the Landau levels of massless Dirac fermions is examined for the cases with and without the fermion doubling. To tune the doubling a tight-binding model having a complex transfer integral is adopted to shift the energies of two Dirac cones, which is theoretically proposed earlier and realizable in cold atoms in an optical lattice. In the absence of the fermion doubling, the n=0n=0 Landau level is shown to exhibit an anomalous sharpness even if the disorder is uncorrelated in space (i.e., large K-K' scattering). This anomaly occurs when the disorder respects the chiral symmetry of the Dirac cone.Comment: 3 pages, 2 figures, Proceedings of ICPS 2012, typos corrected, one sentence added in section I

    Magnetotransport in inhomogeneous magnetic fields

    Full text link
    Quantum transport in inhomogeneous magnetic fields is investigated numerically in two-dimensional systems using the equation of motion method. In particular, the diffusion of electrons in random magnetic fields in the presence of additional weak uniform magnetic fields is examined. It is found that the conductivity is strongly suppressed by the additional uniform magnetic field and saturates when the uniform magnetic field becomes on the order of the fluctuation of the random magnetic field. The value of the conductivity at this saturation is found to be insensitive to the magnitude of the fluctuation of the random field. The effect of random potential on the magnetoconductance is also discussed.Comment: 5 pages, 5 figure

    Flavor Doubling and the Nature of Asymptopia

    Full text link
    We consider the possibility that QCD with N flavors has a useful low-energy description with 2N flavors. Specifically, we investigate a free theory of 2N quarks. Although the free theory is U(N)_L X U(N)_R invariant, it admits a larger U(2N) invariance. However, when the axial anomaly is accounted for in the effective theory by a 't Hooft interaction, only SU(N)_L X SU(N)_R X U(1)_B \subset U(2N) survives. There is however a residual discrete symmetry that is not a symmetry of the QCD lagrangian. This S_2 subgroup of U(2N) has many interesting properties. For instance, when explicit chiral symmetry breaking effects are present, S_2 is broken unless \bar\theta=0 or pi. By expressing the free theory on the light-front, we show that flavor doubling implies several superconvergence relations in pion-hadron scattering. Implicit in the 2N-flavor effective theory is a Regge trajectory with vacuum quantum numbers and unit intercept whose behavior is constrained by S_2. In particular, S_2 implies that forward pion-hadron scattering becomes purely elastic at high-energies, in good agreement with experiment.Comment: 26 pages TeX, uses mtexsis.te

    Unconventional conductance plateau transitions in quantum Hall wires with spatially correlated disorder

    Full text link
    Quantum transport properties in quantum Hall wires in the presence of spatially correlated random potential are investigated numerically. It is found that the potential correlation reduces the localization length associated with the edge state, in contrast to the naive expectation that the potential correlation increases it. The effect appears as the sizable shift of quantized conductance plateaus in long wires, where the plateau transitions occur at energies much higher than the Landau band centers. The scale of the shift is of the order of the strength of the random potential and is insensitive to the strength of magnetic fields. Experimental implications are also discussed.Comment: 5 pages, 4 figure

    Anderson transition of three dimensional phonon modes

    Full text link
    Anderson transition of the phonon modes is studied numerically. The critical exponent for the divergence of the localization length is estimated using the transfer matrix method, and the statistics of the modes is analyzed. The latter is shown to be in excellent agreement with the energy level statistics of the disrodered electron system belonging to the orthogonal universality class.Comment: 2 pages and another page for 3 figures, J. Phys. Soc. Japa
    • …
    corecore