research

Numerical study on Anderson transitions in three-dimensional disordered systems in random magnetic fields

Abstract

The Anderson transitions in a random magnetic field in three dimensions are investigated numerically. The critical behavior near the transition point is analyzed in detail by means of the transfer matrix method with high accuracy for systems both with and without an additional random scalar potential. We find the critical exponent ν\nu for the localization length to be 1.45±0.091.45 \pm 0.09 with a strong random scalar potential. Without it, the exponent is smaller but increases with the system sizes and extrapolates to the above value within the error bars. These results support the conventional classification of universality classes due to symmetry. Fractal dimensionality of the wave function at the critical point is also estimated by the equation-of-motion method.Comment: 9 pages, 3 figures, to appear in Annalen der Physi

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 24/08/2020