275 research outputs found

    A case of biopsy-proven cardiac sarcoidosis without any other extracardiac manifestations

    Get PDF
    SummaryA 49-year-old woman was referred to our hospital for uncontrollable heart failure. She had never been diagnosed as having sarcoidosis. Chest X-ray showed cardiomegaly without bilateral hilar lymphadenopathy. Echocardiography showed diffuse hypokinesis of the left ventricle mimicking idiopathic dilated cardiomyopathy. No specific manifestations implying sarcoidosis were observed. On cardiac catheterization, coronary angiograms were normal, whereas concurrent routine endomyocardial biopsy showed foci of non-caseating granuloma, indicating sarcoidosis. Pathological finding was the only clue to diagnose cardiac sarcoidosis among our standard examinations for heart failure. No other additional investigations found any extracardiac features of sarcoidosis. All serological and immunological examinations were within normal range. This is a challenging case of biopsy-proven cardiac sarcoidosis without any other extracardiac involvement

    Shinsō gakushū ni yoru afōdaburu āban konpyūtingu jitsugen ni muketa kenkyū

    Get PDF

    Preparation and Observation of Fresh-frozen Sections of the Green Fluorescent Protein Transgenic Mouse Head

    Get PDF
    Hard tissue decalcification can cause variation in the constituent protein characteristics. This paper describes a method of preparating of frozen mouse head sections so as to clearly observe the nature of the constituent proteins. Frozen sections of various green fluorescent protein (GFP) transgenic mouse heads were prepared using the film method developed by Kawamoto and Shimizu. This method made specimen dissection without decalcification possible, wherein GFP was clearly observed in an undamaged state. Conversely, using the same method with decalcification made GFP observation in the transgenic mouse head difficult. This new method is suitable for observing GFP marked cells, enabling us to follow the transplanted GFP marked cells within frozen head sections

    Demolition of Reinforced Concrete by Steam Pressure Cracking System

    Get PDF
    The authors developed an environment-friendly demolition mechanical system for a large reinforced concrete structure for an actual site. The steam pressure cracking agent (SPC, non-explosive) is a method that can safely and quickly separate concrete because it produces lesser vibration and sound than the blasting method, which uses explosives. The authors showed that the direction of cracking can be controlled by an induction hole. The principle of control is that the elastic wave of the compression stress generated from the SPC reaction changes to a tensile elastic wave at the induction hole, which initiates a crack. Furthermore, in the SPC method, a large amount of concrete powder generated by the explosion method was not produced, and there was no risk of secondary contamination by fine concrete powder. The area over which the crack propagated depends on the energy generated from the SPC. The relationship between the two is linear. For reinforced concrete, the energy of the SPC is used for both the destructive energy of the concrete and the energy of the cutting of the reinforcing steel bar, which quickly breaks with low energy. By applying an SPC to dismantle large reinforced concrete structures, controlled cracking can be achieved safely and quickly without any environmental pollution. A fracturing method using a SPC is an effective method for the decommissioning of nuclear power plants and the dismantling of concrete structures. In this report, we report a remote drilling system that can be used to remotely install loading holes and guiding holes for the SPC and perform effective controlled fracturing

    Elastic Wave Property of Concrete Decomposed by Steam Pressure Cracking Agent

    Get PDF
    A steam pressure cracking (SPC) agent is a method that can dismantle concrete safely and quickly. In previous studies, the authors showed that the direction of the crack could be controlled by the tensile stress at the induction holes and not by the compressive stress at the SPC hole. We demonstrate that the compression elastic wave changes to a tensile wave when the wave is reflected at the free surface of the induction hole. We also examined the properties of the concrete by developing an elastic wave measuring system that is difficult to break down even in high-temperature, wet, and radiation environment. The elastic wave velocity change in the four concrete types was less than 4%. It was found that the standard deviation value, σ, changed four times. Therefore, it is possible to determine the deterioration of the internal structure of concrete using the standard deviation value σ, which indicates the dispersion of the elastic wave velocity
    corecore