301 research outputs found

    Enhancing Light-Absorption and Luminescent Properties of Non-Emissive 1,3,4,6,9b-Pentaazaphenalene through Perturbation of Forbidden Electronic Transition by Boron Complexation

    Get PDF
    We report an improvement of optical properties of the non‐emissive molecule through shuffling the molecular orbitals by boron complexation. The 1, 3, 4, 6, 9b‐pentaazaphenelene (5AP) derivative having a 2‐(dimesitylboryl)phenyl group was synthesized through a substitution reaction from a 2‐bromophenyl compound. The formation of the B−N dative bond was confirmed by ¹¹B{¹H} NMR spectroscopy and a single‐crystal X‐ray structure analysis. Most of the conventional 5AP derivatives hardly showed emission despite their planar and rigid molecular structures. The previous reports on 5AP derivatives ascribed the non‐luminescent behavior to the forbidden transition between frontier orbitals. On the other hand, the 5AP‐based boron complex in this work showed enhanced light absorption and luminescence from the HOMO−LUMO transition. Theoretical calculations suggested that the boron complexation should play a critical role in perturbing the forbidden character of the HOMO−LUMO transition. Because the nitrogen atom on the 5AP moiety formed the Lewis acid−base pair with the boron atom, the energy level of the HOMO of 5AP was downshifted. The character of the HOMO−LUMO transition of the boron complex was changed to afford the improved optical properties of the boron complex

    Effects of insulin-like growth factor-1 on the mRNA expression of estradiol receptors, steroidogenic enzymes, and steroid production in bovine follicles

    Get PDF
    Insulin-like growth factor-1 (IGF-1) plays a crucial role in follicular growth and stimulates steroid hormone production in bovine follicles. Steroid hormones are synthesized through the actions of steroidogenic enzymes, specifically STAR, CYP11A1, HSD3B, and CYP19A1 in both theca cells (TCs) and granulosa cells (GCs), under the influence of gonadotropins. Particularly, estradiol 17 beta (E2) assumes a central role in follicular development and selection by activating estrogen receptors beta (ESR2) in GCs. We assessed ESR2 mRNA expression in GCs of developing follicles and investigated the impact of IGF-1 on the mRNA expression of ESR2, CYP19A1, FSHR, and LHCGR, STAR, CYP11A1, and HSD17B in cultured GCs and TCs, respectively. Additionally, we assessed the influence of IGF-1 on androstenedione (A4), progesterone (P4), and testosterone (T) production in TCs. Small-sized follicles (= 9 mm) (P < 0.05). IGF-1 increased the mRNA expression of ESR2, CYP19A1, and FSHR in GCs of follicles of both sizes, except for FSHR mRNA in medium-sized follicles (P < 0.05). IGF-1 significantly elevated mRNA expression of LHCGR, STAR, CYP11A1, and CYP17B in TCs of small-and medium-sized follicles (P < 0.05). Moreover, IGF-1 augmented the production of A4 and P4 but had no impact on T production in TCs of small-and medium-sized follicles. Taken together, our findings indicate that IGF-1 upregulates steroidogenic enzymes and steroid hormone production, underscoring the crucial role of IGF-1 in follicle development and selection

    Intestinal Diffuse Large B-Cell Lymphoma in a Patient with Systemic Lupus Erythematosus

    Get PDF
    A 44-year-old Japanese woman with systemic lupus erythematosus (SLE) presented to our hospital with abdominal pain. Radiological and endoscopic examinations led to the diagnosis of diffuse large B-cell lymphoma of the jejunum, which was subsequently resected. Patients with SLE reportedly have an increased risk of non-Hodgkin lymphoma, as demonstrated by our patient. Hence, lymphoma should be considered in the differential diagnosis of neoplastic lesions emerging in SLE patients. In addition, flow cytometry using endoscopically biopsied fragments is useful for the immediate diagnosis of lymphoma, leading to timely and accurate preoperative staging

    A novel anti-TNF-α drug ozoralizumab rapidly distributes to inflamed joint tissues in a mouse model of collagen induced arthritis

    Get PDF
    In clinical studies, the next-generation anti-tumor necrosis factor-alpha (TNF-α) single domain antibody ozoralizumab showed high clinical efficacy shortly after the subcutaneous injection. To elucidate the mechanism underlying the rapid onset of the effects of ozoralizumab, we compared the biodistribution kinetics of ozoralizumab and adalimumab after subcutaneous injection in an animal model of arthritis. Alexa Fluor 680-labeled ozoralizumab and adalimumab were administered by subcutaneous injection once (2 mg/kg) at five weeks after induction of collagen-induced arthritis (CIA) in an animal arthritis model. The time-course of changes in the fluorescence intensities of the two compounds in the paws and serum were evaluated. The paws of the CIA mice were harvested at four and eight hours after the injection for fluorescence microscopy. Biofluorescence imaging revealed better distribution of ozoralizumab to the joint tissues than of adalimumab, as early as at four hours after the injection. Fluorescence microscopy revealed a greater fluorescence intensity of ozoralizumab in the joint tissues than that of adalimumab at eight hours after the injection. Ozoralizumab showed a significantly higher absorption rate constant as compared with adalimumab. These results indicate that ozoralizumab enters the systemic circulation more rapidly and is distributed to the target tissues earlier and at higher levels than conventional IgG antibodies. Our investigation provides new insight into the mechanism underlying the rapid onset of the effects of ozoralizumab in clinical practice.Oyama S., Ebina K., Etani Y., et al. A novel anti-TNF-α drug ozoralizumab rapidly distributes to inflamed joint tissues in a mouse model of collagen induced arthritis. Scientific Reports 12, 18102 (2022); https://doi.org/10.1038/s41598-022-23152-6

    Development of fully automated and ultrasensitive assays for urinary adiponectin and their application as novel biomarkers for diabetic kidney disease

    Get PDF
    Glomerular filtration rate (GFR) and urinary albumin excretion rate (UAER) are used to diagnose and classify the severity of chronic kidney disease. Total adiponectin (T-AN) and high molecular weight adiponectin (H-AN) assays were developed using the fully automated immunoassay system, HI-1000 and their significance over conventional biomarkers were investigated. The T-AN and H-AN assays had high reproducibility, good linearity, and sufficient sensitivity to detect trace amounts of adiponectin in the urine. Urine samples after gel filtration were analyzed for the presence of different molecular isoforms. Low molecular weight (LMW) forms and monomers were the major components (93%) of adiponectin in the urine from a diabetic patient with normoalbuminuria. Urine from a microalbuminuria patient contained both high molecular weight (HMW) (11%) and middle molecular weight (MMW) (28%) adiponectin, although the LMW level was still high (52%). The amount of HMW (32%) and MMW (42%) were more abundant than that of LMW (24%) in a diabetic patient with macroalbuminuria. T-AN (r = − 0.43) and H-AN (r = − 0.38) levels showed higher correlation with estimated GFR (eGFR) than UAER (r = − 0.23). Urinary levels of both T-AN and H-AN negatively correlated with renal function in diabetic patients and they may serve as new biomarkers for diabetic kidney disease
    corecore