297 research outputs found

    Nab-paclitaxel for the treatment of breast cancer: efficacy, safety, and approval

    Get PDF
    Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a novel formulation of paclitaxel that does not require solvents such as polyoxyethylated castor oil and ethanol. Use of these solvents has been associated with toxic response, including hypersensitivity reactions and prolonged sensory neuropathy, as well as a negative impact in relation to the therapeutic index of paclitaxel. nab-paclitaxel displays greater antitumor activity and less toxicity than solvent-base paclitaxel. In a phase I trial of single nab-paclitaxel, the maximum tolerated dose was 300 mg/m2 with the dose limiting toxicities being sensory neuropathy, stomatitis, and superficial keratopathy. In the metastatic setting, a pivotal comparative randomized phase III study demonstrated that nab-paclitaxel (at 260 mg/m2 over 30 minutes infusion without premedication every 3 weeks) mediated a superior objective response rate and prolonged time to progression compared with solvent-based paclitaxel (at 175 mg/m2 over a 3-hour injection with standard premedication). The nab-paclitaxel-treated group showed a higher incidence of sensory neuropathy than the solvent-based paclitaxel group. However, these adverse side effects rapidly resolved after interruption of treatment and dose reduction. Weekly administration of nabpaclitaxel was also more active and displayed less toxicity compared with 100 mg/m2 docetaxel given triweekly. Nab-paclitaxel has already been approved in 42 countries for the treatment of metastatic breast cancer previously treated with anthracycline, based on confirmation of the efficacy and manageable toxicity in the metastatic setting. This review summarizes the most relevant knowledge on nab-paclitaxel for treating breast cancer in terms of clinical usefulness including efficacy and safety of this new agent

    Separation of long DNA chains using non-uniform electric field: a numerical study

    Get PDF
    We study migration of DNA molecules through a microchannel with a series of electric traps controlled by an ac electric field. We describe the motion of DNA based on Brownian dynamics simulations of a beads-spring chain. Our simulation demonstrates that the chain captured by an electrode escapes from the binding electric field due to thermal fluctuation. We find that the mobility of chain would depend on the chain length; the mobility sharply increases when the length of a chain exceeds a critical value, which is strongly affected by the amplitude of the applied ac field. Thus we can adjust the length regime, in which this microchannel well separates DNA molecules, without changing the structure of the channel. We also present a theoretical insight into the relation between the critical chain length and the field amplitude.Comment: 12 pages, 9 figure

    G‐CSF‐dependent neutrophil differentiation requires downregulation of MAPK activities through the Gab2 signaling pathway

    Get PDF
    Granulocyte colony‐stimulating factor (G‐CSF) stimulation of myeloid cells induced tyrosine‐phosphorylation of cellular proteins. One of the tyrosine‐phosphorylated proteins was found to be a scaffold protein, Grb2‐associated binding protein 2 (Gab2). Another member of Gab family protein, Gab3, was exogenously overexpressed in neutrophil progenitor cells to make the Gab3 protein to compete with the endogenous Gab2 for the G‐CSF‐dependent signaling. In Gab3‐overexpressed cells, the level of tyrosine phosphorylation of endogenous Gab2 by G‐CSF stimulation was markedly downregulated, while the phosphorylation of Gab3 was significantly enhanced. The Gab3‐overexpressed cells continuously proliferated in the medium containing G‐CSF and lost the ability to differentiate to the mature neutrophil, characterized by the lobulated nucleus. The G‐CSF stimulation‐dependent tyrosine phosphorylation of Gab3, the association of SHP2 to Gab3 and the following mitogen‐activated protein kinase (MAPK) activation were prolonged in the Gab3‐overexpressed cells, compared to the parental cells, where the binding of SHP2 to Gab2 protein and thereby the activation of MAPK were not sustained after G‐CSF stimulation. Inhibition of MAPK by pharmaceutical inhibitor restored the Gab3‐overexpressed cells to the ability to differentiate to mature neutrophil. Therefore, G‐CSF‐dependent Gab2 phosphorylation and following its downregulation led the short‐term MAPK activation. The downregulation of MAPK after transient Gab2 phosphorylation was necessary for the consequent neutrophil differentiation induced by G‐CSF stimulation

    Enterococcus hirae vacuolar ATPase is expressed in response to pH as well as sodium

    Get PDF
    AbstractThe Enterococcus hirae ntp operon encodes both a vacuolar ATPase, which transports Na+ as well as Li+, and the KtrII K+ transporter. A plasmid, in which the chloramphenicol acetyltransferase gene (CAT) was placed downstream of the ntp promoter, was introduced into a mutant totally defective in Na+ extrusion. The CAT activity of this transformant was increased preferentially by addition of NaCl, but not by LiCl, in the media or by elevating the medium pH, correlating well with the increase in amounts of the ATPase subunits observed by Western blotting. The physiological significance of these responses of the ntp promoter is discussed

    Preparation and Observation of Fresh-frozen Sections of the Green Fluorescent Protein Transgenic Mouse Head

    Get PDF
    Hard tissue decalcification can cause variation in the constituent protein characteristics. This paper describes a method of preparating of frozen mouse head sections so as to clearly observe the nature of the constituent proteins. Frozen sections of various green fluorescent protein (GFP) transgenic mouse heads were prepared using the film method developed by Kawamoto and Shimizu. This method made specimen dissection without decalcification possible, wherein GFP was clearly observed in an undamaged state. Conversely, using the same method with decalcification made GFP observation in the transgenic mouse head difficult. This new method is suitable for observing GFP marked cells, enabling us to follow the transplanted GFP marked cells within frozen head sections

    The development of carbonate-containing apatite/collagen composite for osteoconductive apical barrier material.

    Get PDF
    The current report describes the properties of a new apical barrier material formulated from carbonate-containing apatite (CAp) and collagen. CAp particles of around 50 nm were deposited on reconstituted collagen fibers. CAp/col with about 60 wt % CAp (corresponding to apatite content of bone) was obtained after 1 day of calcification. CAp content increased up to about 80 wt % in a 15-day calcification reaction. CAp/col was composed of fine calcified collagen fibers. The crystallinity and Ca/PO(4) ratio of CAp were comparable to those of bone apatite. The mixture of CAp/col and saline reached a pH of about 9. The optimum powder-to-liquid ratio (P/L) to set into a root canal was determined to be 1.2. Furthermore, the mixture (P/L = 1.2) condensed in a root canal was liquid permeable. Thus, the CAp/col was expected as an apical barrier material with osteoconductivity.The current report describes the properties of a new apical barrier material formulated from carbonate-containing apatite (CAp) and collagen. CAp particles of around 50 nm were deposited on reconstituted collagen fibers. CAp/col with about 60 wt % CAp (corresponding to apatite content of bone) was obtained after 1 day of calcification. CAp content increased up to about 80 wt % in a 15-day calcification reaction. CAp/col was composed of fine calcified collagen fibers. The crystallinity and Ca/PO(4) ratio of CAp were comparable to those of bone apatite. The mixture of CAp/col and saline reached a pH of about 9. The optimum powder-to-liquid ratio (P/L) to set into a root canal was determined to be 1.2. Furthermore, the mixture (P/L = 1.2) condensed in a root canal was liquid permeable. Thus, the CAp/col was expected as an apical barrier material with osteoconductivity

    Urinary biopyrrins levels are elevated in relation to severity of heart failure

    Get PDF
    AbstractObjectivesWe investigated the relationship between the urinary levels of biopyrrins and the severity of heart failure (HF).BackgroundOxidative stress is evident in heart disease and contributes to the development of ventricular dysfunction in patients with HF. Biopyrrins, oxidative metabolites of bilirubin, have been discovered as potential markers of oxidative stress.MethodsWe measured the levels of urinary biopyrrins and plasma B-type natriuretic peptide (BNP) in 94 patients with HF (59 men; mean age 65 years) and 47 control subjects (30 men; mean age 65 years). Urine and blood samples were taken after admission in all subjects. Further urine samples were obtained from 40 patients after treatment of HF.ResultsThe urinary biopyrrins/creatinine levels (Όmol/g creatinine) were the highest in patients in New York Heart Association (NYHA) class III/IV (n = 26; 17.05 [range 7.85 to 42.91]). The urinary biopyrrins/creatinine levels in patients in NYHA class I (n = 35; 3.46 [range 2.60 to 5.42]) or II (n = 33; 5.39 [range 3.37 to 9.36]) were significantly higher than those in controls (2.38 [range 1.57 to 3.15]). There were significant differences in urinary biopyrrins/creatinine levels among each group. The treatment of HF significantly decreased both urinary biopyrrins/creatinine levels (from 7.43 [range 3.84 to 17.05] to 3.07 [range 2.21 to 5.71]) and NYHA class (from 2.5 ± 0.1 to 1.7 ± 0.1). Log biopyrrins/creatinine levels were positively correlated with log BNP levels (r = 0.650, p < 0.001).ConclusionsThese results indicate that urinary biopyrrins levels are increased in patients with HF and are elevated in proportion to its severity
    • 

    corecore