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Abstract 
 
Granulocyte colony-stimulating factor (G-CSF) stimulation of myeloid cells induced 

tyrosine-phosphorylation of cellular proteins. One of the tyrosine-phosphorylated proteins 

was found to be a scaffold protein, Grb2-associated binding protein 2 (Gab2). Another 

member of Gab family protein, Gab3, was exogenously overexpressed in neutrophil 

progenitor cells to make the Gab3 protein to compete with the endogenous Gab2 for the G-

CSF dependent signaling. In Gab3-overexpressed cells, the level of tyrosine phosphorylation 

of endogenous Gab2 by G-CSF stimulation was markedly down-regulated, while the 

phosphorylation of Gab3 was significantly enhanced. The Gab3-overexpressed cells 

continuously proliferated in the medium containing G-CSF and lost the ability to differentiate 

to the mature neutrophil, characterized by the lobulated nucleus. The G-CSF stimulation-

dependent tyrosine phosphorylation of Gab3, the association of SHP2 to Gab3 and the 

following MAPK activation were prolonged in the Gab3-overexpressed cells, compared to 

the parental cells, where the binding of SHP2 to Gab2 protein and thereby the activation of 

MAPK were not sustained after G-CSF stimulation. Inhibition of MAPK by pharmaceutical 

inhibitor restored the Gab3-overexpressed cells to the ability to differentiate to mature 

neutrophil.  Therefore, G-CSF dependent Gab2 phosphorylation and following its down-

regulation led the short-term MAPK activation. The down-regulation of MAPK after 

transient Gab2 phosphorylation was necessary for the consequent neutrophil differentiation 

induced by G-CSF stimulation.  

 

 

 

 

 

 

 

 

 

  



 3 

1. Introduction 
 

Granulocyte colony-stimulating factor (G-CSF) is a critical regulator of neutrophilic 

granulocyte production and stimulates the proliferation, survival, maturation, and functional 

activation of the cells of the granulocytic lineage (Demetri and Griffin, 1991; Murakami and 

Nagata, 1998). G-CSF binding to its receptor leads to receptor homodimerization (Ishizaka-

Ikeda et al., 1993) and the activation of receptor-associated Janus kinase (Jak) family of 

protein kinases, which in turn leads to the phosphorylation of four tyrosine residues (Tyr703, 

728, 743, and 763 of the murine G-CSF receptor) within the cytoplasmic domain of the 

receptor. (Ward et al., 1999; Yoshikawa et al., 1995). The signaling molecules, which were 

reported to be activated through the G-CSF receptor, include the Janus kinases, Jak1, Jak2, 

and Tyk2 (Avalos et al., 1997; Nicholson et al., 1995; Nicholson et al., 1994; Shimoda et al., 

1997; Tian et al., 1996), the signal transducer and activator of transcription (STAT) proteins, 

STAT1, STAT3, and STAT5 (Chakraborty et al., 1996; Nicholson et al., 1996; Tian et al., 

1996; Tweardy et al., 1995), the Src kinases Lyn and Hck (Corey et al., 1994; Corey et al., 

1998; Ward et al., 1998a), and components of the Ras, Raf, mitogen-activated protein kinase 

(MAPK), and MAPK-related pathways (Barge et al., 1996; Bashey et al., 1994; de Koning et 

al., 1996; de Koning et al., 1998; Nicholson et al., 1995; Ward et al., 1998b) as well as the 

phosphatidylinositol-3 kinase (PI3-K)-Akt pathway (Dong and Larner, 2000). 

When neutrophil precursor cells, GM-I62-1, are stimulated with G-CSF, a number of 

cellular proteins are tyrosine-phosphorylated, and cells first proliferate, then stop 

proliferating and eventually differentiate to mature neutrophil characterized by lobulated 

nuclei (Oka et al., 2006; Omura et al., 2002; Yoshikawa et al., 1995). Grb2 associated binder 

2 (Gab2) protein was among the phosphorylated proteins by G-CSF stimulation (Zhu et al., 

2004). Gab2 is a scaffold protein, which belongs to the Gab family proteins, including Gab1, 

Gab2 and Gab3 in mammals. They are involved in various signaling pathways, including the 

PI3-K-Akt and Ras-MAPK pathways downstream of receptor tyrosine kinases and cytokine 

receptors (Arnaud et al., 2004; Crouin et al., 2001; Nishida and Hirano, 2003; Nishida et al., 

1999; Seiffert et al., 2003). They have conserved motifs, that is, amino-terminal pleckstrin 

homology (PH) domain, two proline-rich Src-homology (SH)3 docking sites and multiple 

tyrosine residues, which provide the binding sites for SH2 domain containing proteins when 

they are phosphorylated (Liu and Rohrschneider, 2002).  

 Among the Gab family proteins, Gab2 is predominantly expressed in hematopoietic 

cells and is tyrosine-phosphorylated upon cytokine stimulations. As expected, Gab2 was one 
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of the major tyrosine phosphorylated proteins in neutrophil precursor cell, GM-I62-1, by G-

CSF stimulation as shown previously (Zhu et al., 2004) and also in this report. Therefore, it is 

likely that Gab2 scaffold protein is involved in the G-CSF-dependent signaling.  

In order to elucidate the role of Gab2 in neutrophil differentiation induced by G-CSF, we 

took advantage of the overall structural similarities as well as their confined differences 

between Gab2 and Gab3 proteins. We expressed Gab3 in neutrophil precursor cell, GM-I62-

1, to make it compete with the endogenous Gab2 for G-CSF-stimulated signaling. In Gab3-

overexpressed cells, GM-Gab3, exogenously expressed Gab3 was tyrosine-phosphorylated 

by G-CSF stimulation, along with the decreased phosphorylation of endogenous Gab2. The 

Gab3-overexpressed cells responded to G-CSF for continuous proliferation, and nuclear 

morphological changes, i.e. nuclear lobulation, were not observed. Therefore, G-CSF-

dependent neutrophil differentiation was blocked in the Gab3-overexpressed cells. 

Furthermore, we found that the activation of MAPK downstream of Gab2 was down-

regulated due to the negative feedback regulation of Gab2 phosphorylation and that the 

MAPK activity downstream of Gab3 was kept higher after G-CSF stimulation. The down-

regulation of MAPK activity appeared to be necessary for the G-CSF-induced neutrophil 

differentiation. 
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2. Materials and Methods 

 

2.1. Growth Factors and cell lines 

 

  Mouse recombinant interleukin-3 (IL-3) and G-CSF were used as described previously 

(Fukunaga et al., 1990; Omura et al., 2002). Mouse myeloid cell line, GM-I62-1 is a clonal 

cell line of GM-I62M described previously (Yoshikawa et al., 1995) and shows the same 

properties as GM-I62M. These cells express mouse G-CSF receptor and respond to G-CSF 

with neutrophil differentiation. Another mouse neutrophil precursor cell line, L-G, have been 

described previously (Lee et al., 1991). Cells were grown in RPMI 1640 medium 

supplemented with 10% fetal bovine serum (Gibco Life Technologies, USA) and 45 units/ml 

IL-3. 

 

2.2. Plasmid construction 

 

Murine cDNA was synthesized by Superscript III (Invitrogen, USA) with total RNA 

isolated from GM-I62M cells (Yoshikawa et al., 1995) which were grown in the medium 

supplemented with IL-3 according to the manufacturer’s instructions. The Gab3-Flag 

expression plasmid was constructed as follows. PCR was carried out using Gab3_Eco-F 

(CGAATTCAGGATGAGCACTGGTGACACTA) and Gab3-1100-R 

(CCACATGGTCTAACCCAGA) for Gab3-N-terminal, and Gab3-1050-F 

(CAAGAAGCCAGGGTATACT) and Gab3-XbaI-R 

(CGTCTAGACACTTTGGATTGCCTCTCATC) for Gab3-C-terminal, with murine Gab3 

cDNA as a template. Both products were isolated by agarose gel electrophoresis. The Gab3-

N-terminal PCR product was digested with EcoRI and KpnI, and resultant 1030-bp DNA 

fragment was inserted into pBluescript II SK (+) (Stratagene, La Jolla, CA, USA) which had 

been digested with EcoRI and KpnI. The Gab3-C-terminal PCR product was digested with 

KpnI and XbaI, and resultant 760-bp DNA fragment was inserted into pBluescript II SK (+), 

which had been digested with KpnI and XbaI. The authenticity of the resulting plasmids (pBS 

II SK (+) Gab3-N and pBS II SK (+) Gab3-C) were confirmed by DNA sequencing. The 

EcoRI-KpnI fragment of pBS II SK (+) Gab3-N terminal and the KpnI-XbaI fragment of pBS 

II SK (+) Gab3-C terminal were isolated and inserted into the pEF-BOS-EX-C-Flag 

(procedure to construct pEF-BOS-EX-C-Flag will be described elsewhere) which had been 
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digested with EcoRI and XbaI. The plasmid was designated pBOS-Gab3-Flag and used as an 

expression plasmid for Flag-tagged Gab3. 

N-terminal HA-tag expression vector pEF-BOS-EX-HA was constructed as follows: HA-

tag oligonucleotides, HA-for (catggccTACCCCTACGACGTGCCCGACTACGCCg) and 

HA-rev (aattcGGCGTAGTCGGGCACGTCGTAGGGGTAggc) which have NcoI site and 

EcoRI site, were annealed and inserted into pEF-BOS-EX-Flag plasmid (Omura et al., 2002) 

which has been digested with EcoRI and partially with NcoI to remove DNA fragment for 

Flag-tag. The obtained plasmid was designated as pEF-BOS-EX-HA. 

The HA-tagged Gab2 expression plasmid was constructed as follows. N-terminal and C-

terminal Gab2 cDNA fragments were amplified by PCR using primers, either Gab2-N-f 

(GCGGTACCGACATGAGCGGCGGCGGC) and Gab2-N-r 

(CTGTGAGGCTGCTCTTGGTG) or Gab2-C-f (GCCAAGCCGACACAATACAG) and 

Gab2-C-r (CGTCTAGATTACAGCTTGGCACCCTTGG) with cDNA prepared with total 

RNA prepared from GM-I62M cells. Amplified N-terminal and C-terminal Gab2 cDNA 

fragment were digested with KpnI and EcoRI or EcoRI and XbaI, respectively and were 

inserted into the corresponding restriction sites of pBluescript II SK (+). The resulting 

plasmids were pBSIISK(+)Gab2-N and pBSIISK(+)Gab2-C, respectively. The authenticity of 

these plasmids was confirmed by DNA sequencing. The Gab2 N-terminal and C-terminal 

fragments were again isolated from these plasmids and were inserted together into the KpnI 

and XbaI sites of pEF-BOS-EX -HA. The resulting plasmid was designated pBOS-HA-Gab2. 

Flag-tagged Gab2 expression plasmid, pBOS-Flag-Gab2, was constructed as follows. The 

SphI-KpnI fragment harboring promoter region and HA-sequence just upstream of Gab2 

cDNA in pBOS-HA-Gab2 was replaced by the corresponding fragment from pEF-BOS-EX-

Flag (Omura et al., 2002). 

  To construct the Gab3FF-Flag expression plasmid, where two tyrosine residues Tyr542 

and Tyr569, to which SHP2 binds, were replaced with Phe, site-directed mutagenesis was 

carried out. The primers used for the PCR were Gab3-Y395F-F 

(GAAGACAGCTATGTGCCCTGA) and Gab3-Y542F-R-1 

(TCCAGGGCCAAAAAATCCAAGCTGAATTTC) for one reaction, and Gab3-Y542F-F-1 

(TTCAGCTTGGATTTTTTGGCCCTGGACTTC) and BOS-A2 

(GGAGACAAGAAATCCCTGTT) for another, with pBOS-Gab3-Flag plasmid DNA as a 

template, to replace Y542. Both products were isolated by agarose gel electrophoresis, then 

mixed 1:1 and used as templates for secondary PCR with Gab3-Y395F-F and BOS-A2 as 
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primers. The resulting PCR product, Gab3-Y542, was isolated by agarose gel electrophoresis. 

The second mutation was introduced by the following PCR. The primers used for the 

reactions were Gab3-Y416F-F (AGGATGACTTCATTCCAATGAG) and Gab3-Y569F-R 

(TCCACTTGAACAAAGTCTACTCTCTGCTCT) for one reaction, and Gab3-Y569F-F 

(CAGAGAGTAGACTTTGTTCAAGTGGATGAA) and BOS-A2 for another, with the 

above DNA fragment, Gab3-Y542 as a template. Both products were isolated by agarose gel 

electrophoresis, then mixed 1:1 and used as templates for secondary PCR with Gab3-Y416F-

F and BOS-A2 as primers. The resulting PCR product was digested with PstI and XbaI, and 

the obtained 2933-bp DNA fragment was inserted into pBluescript II KS (+), which had been 

digested with PstI and XbaI. The authenticity of the plasmid obtained (pBS-Gab3FF) was 

confirmed by DNA sequencing. The 430-bp XhoI–XbaI fragment of pBS-Gab3FF was 

isolated again and ligated with the 1364 bp EcoRI–XhoI fragment and the 5264-bp EcoRI–

XbaI fragment of pBOS-Gab3-Flag. The plasmid obtained was designated pBOS-Gab3FF-

Flag and used as an expression plasmid for Flag-tagged Gab3FF. 

GST-Gab3-C protein expression plasmid was constructed as follows. The pBS II SK (+) 

Gab3-N was digested with NcoI, and the NcoI end was filled in by Klenow polymerase. 

Then, the obtained fragment was again digested with KpnI. The blunt-ended NcoI-KpnI 

Gab3-N fragment and the KpnI-NotI fragment isolated from pBS II SK (+) Gab3-C plasmid 

were ligated with the 4900 bp SmaI-NotI fragment of pGEX4T-2 (GE Healthcare Life 

Sciences). The obtained plasmid was designated pGEX-Gab3-C and used as an E. coli 

expression plasmid for GST-tagged Gab3-C. 

GST-Gab2-C protein expression plasmid was constructed as follows. The EcoRI-NotI 

fragment of pBS II SK (+) Gab2-C terminal were isolated and ligated with the 4900-bp 

EcoRI-NotI fragment of pGEX 4T-1 (GE Healthcare Life Sciences). The plasmid was 

designated pGEX-Gab2-C and used as an expression plasmid for GST-tagged Gab2-C. 

 

2.3. Preparation of antibodies against murine Gab2 and Gab3 

 

GST-Gab2-C and GST-Gab3-C fusion proteins were expressed in E. coli and purified using 

Glutathione-Sepharose CL-4B affinity resin (GE Healthcare Life Sciences). Briefly, E. coli 

BL21(DE3) harboring either pGEX-Gab2-C or pGEX-Gab3-C was cultured in the M9 

medium containing 0.2% glucose, 0.1% tryptone and 0.1 mg/ml ampicillin until the turbidity 
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at 600 nm reached to 0.6. The expression of the plasmid-harboring genes was induced by 

adding IPTG at 0.1mM and the cells were further cultured for another 3 hrs at 30 °C.  

The E. coli cells were harvested, washed with buffer A (20 mM Tris-HCI (pH 7.5), 150 

mM NaCl, 1 mM EDTA and 1 mM PMSF) and suspended with the same buffer. After the 

treatment with lysozyme at a concentration of 0.1mg/ml, DTT and Sarkosyl were 

supplemented to the solution at 5mM and 0.5%, respectively, and cells were disrupted by 

sonication and cytosolic proteins were recovered by centrifugation at 12,000 x g for 15min at 

4 °C. Tritone X-100 was added to the obtained supernatant at the concentration of 0.5% and 

GST fusion proteins were absorbed to the Glutathione-Sepharose 4B (GE Healthcare Life 

Sciences, Marlborough, MA) for 12 hr at 4°C. After the resin was packed into a column and 

was extensively washed with the buffer A containing 0.5% Triton X-100, the GST fusion 

proteins were eluted from the column with buffer B (50mM Tris HCl pH8.8, 150mMNaCl, 

1mM EDTA and 1mM PMSF) containing 10mM glutathione. The obtained proteins were 

used to immunize rabbits (female New Zealand White) with either complete or incomplete 

Freund’s adjuvants (BD Difco Laboratories, Detroit, MI). Blood was collected from ear vein 

and serum was prepared (Harlow and Lane, 1988). 

 

2.4. Transfection 

 

Mouse GM-I62-1 or L-G cells were transfected with pBOS-Gab3-Flag or pBOS-Gab3FF-

Flag with pBSpacΔp (de la Luna et al., 1988), which carries the puromycin-resistance gene, 

as described (Omura et al., 2002). 

Clonal puromycin-resistant cells were analyzed for their expression of the Flag-tagged 

Gab3 or Gab3FF proteins by immunoblot analysis with an anti-Flag M2 IgG (Sigma, St 

Louis, MO, USA) and anti-Gab3 antiserum prepared as above. Transformants were grown in 

RPMI 1640 medium containing 10% fetal bovine serum and mouse IL-3 (45 units/mL). 

 

2.5. Assay of long-term cell growth and morphological examination 

 

To determine the long-term growth potential of Gab3- or Gab3FF-expressing transfectants, 

cells were incubated at an initial density of 2 × 105 cells/mL in medium containing no factor, 

150 units/mL mouse G-CSF, or 45 units/mL mouse IL-3. The medium was replenished every 

2-4 days to maintain the cell density at (1–5) × 105 cells/mL. Viable cells were stained with 
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trypan blue and counted under the light microscope. To analyze the morphological changes, 

cells were collected on glass slides by centrifugation (850 x g for 8 min) and stained with 

Wright–Giemsa solutions (Merck KGaA, Darmstadt, Germany). 

 

2.6. Assay for the effects of MAPK inhibition on the neutrophil differentiation 

 

MEK inhibitor U0126 (EMD Millipore Corporation, MA USA) was dissolved in DMSO at 

20mM. The reagent was diluted with DMSO to the concentration 200 times more than that 

used in each assay. To examine the effects on the phosphorylation of other signaling proteins 

such as MAPK upon G-CSF stimulation, U0126 was added in the medium 30 minutes before 

the cytokine stimulation. To determine the effects on the growth and morphological changes, 

the inhibitor was added to the medium 24hr after the cells were cultured in the indicated 

medium and the inhibitor was supplemented in every replenished media thereafter. 

 

2.6. Cytokine stimulation and preparation of cell lysate 

 

Cells were grown in the presence of IL-3 to a density of up to 1×106 cells/mL, washed 

three times with factor-free medium containing 5% fetal bovine serum, and starved in the 

factor-free medium with 10% fetal bovine serum at 1.5×106 cells/mL for 4-6 hours in 5%CO2 

incubator at 37 °C. After being stimulated with 150 U/mL G-CSF for the period indicated for 

each experiment, cells were immediately chilled on ice/water, washed twice with ice-cold 

PBS containing 0.2mM Na3VO4, and lysed with lysis buffer [50 mM Tris/HCl, 150 mM 

NaCl, 1 mM EDTA, 50 mM NaF, 1 mM Na3VO4, 10 mM sodium pyrophosphate, 0.5% 

CHAPS, and protease inhibitors (1 mM phenylmethanesulfonyl fluoride (PMSF), 1 µg/mL 

each leupeptin and pepstatin A; Sigma, St. Louis, MO)] for 15 min on ice at a cell density of 

1×108 cells/mL. Insoluble materials were removed by centrifugation at 17,400×g for 15 min 

at 4 °C. 

 

2.7. Immunoprecipitation 

 

Immunoprecipitation of each target protein was performed as below. Cell lysates prepared 

from 3-5 ×106 cells which had been stimulated with G-CSF as described above were diluted 

20-30 times with the lysis buffer containing 1% TritonX-100 instead of 0.5% CHAPS, 
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followed by being pre-cleared by centrifugation at 17,400×g for 10 min at 4 °C. 

Subsequently, antiserum against Gab2, or Gab3 was added to the pre-cleared cell lysates 

followed by incubation for 1 hr at 4°C. The immune complexes were captured by adding 5 

mg of Protein-A Sepharose CL-4B (GE Healthcare Bio-Sciences AB, Sweden) and further 

incubated for 12 hr at 4°C. The immune complexes with Protein A-Sepharose were 

centrifuged at 5,000 x g for 30 sec at 4°C, followed by washing 4 times with the lysis buffer 

containing 1% TritonX-100 and once with lysis buffer without any detergent. Proteins were 

solubilized with SDS sample buffer and subjected to SDS-PAGE and immunoblotting, as 

described previously (Oka et al., 2006). 

 

2.8. Immunoblotting 

 

Cellular proteins were subjected to SDS/PAGE and blotted on to GVHP membranes 

(Millipore Corp., Bedford, MA, USA) as described previously (Omura et al., 2002). The 

membranes were treated as described previously (Oka et al., 2006). Primary antibodies used 

are as follows:  anti-phosphotyrosine IgG (4G10) (Millipore (Cat. # 05-321)), anti-Flag M2 

IgG (Sigma, St. Louis, MO), β-actin (#4970, Cell Signaling Technology), SHP2 (SH-PTP2 

(N-16): sc-424, Santa Cruz Biotechnology, Inc.), p-MAPK (#9101, Cell Signaling 

Technology), MAPK (Millipore (Cat. # 06-128)). Anti-sera against Gab2 and Gab3 were 

prepared as above. Secondary antibodies and reagent conjugated with HRP were rabbit anti-

mouse IgG peroxidase (HRP)-conjugated antibodies (#P0260, DakoCytomation Denmark 

A/S, Denmark), polyclonal goat anti-rabbit immunoglobulins/HRP (#P0448 DakoCytomation 

Denmark A/S, Denmark), and Protein A-peroxidase-linked (NA9120, GE Healthcare, UK). 

Reacted proteins were visualized by enhanced chemiluminescence (Haan and Behrmann, 

2007) and recorded with Fujifilm Lumino-Image analyzer LAS-4000mini (FUJIFILM, 

Tokyo). 

 

2.9. Statistical analysis 

 

Values are presented as the mean ± standard deviation or ± standard error where indicated. 

Statistical significance was assessed using a two-sided Student t-test.   
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3. Results 

 

3.1. Scaffold protein Gab2 is one of the major phosphorylated proteins in GM-I62-1 by 

G-CSF stimulation 

 

GM-I62-1, one of the clonal cell lines of GM-I62M (Yoshikawa et al., 1995), which was 

established by introducing G-CSF receptor cDNA into neutrophil/monocyte progenitor cell 

L-GM (Lee et al., 1991). GM-I62-1 showed the properties of neutrophil progenitor cell, that 

is, it responds to G-CSF with differentiating to the mature neutrophil, characterized by the 

growth suppression and nuclear lobulation as GM-I62M does (Dong et al., 1993; Yoshikawa 

et al., 1995). When GM-I62-1 cells were stimulated by G-CSF, a number of cellular proteins 

were tyrosine-phosphorylated (Yoshikawa et al., 1995) (Figure 1A), among which one of the 

strongly phosphorylated proteins with relative molecular weight of 75kDa was identified as 

Gab2, as it was immunoprecipitated with anti-Gab2 antibodies (Figure 1A, 1B and 1D). 

Therefore, Gab2 protein appeared to be one of the major tyrosine-phosphorylated proteins in 

GM-I62-1 cells by G-CSF stimulation. 

 

3.2. Overexpression of Gab3 protein in GM-I62-1 cells suppressed phosphorylation of 

Gab2 and inhibited the neutrophil differentiation induced by G-CSF 

 

Among the Gab family proteins, Gab1, Gab2 and Gab3, GM-I62-1 cell has mainly Gab2, a 

much lower amount of Gab3 (Figure 1A, 1B and 1C) and an undetectable amount of Gab1 

examined by immunoblotting (data not shown). As Gab2 is phosphorylated heavily by G-

CSF stimulation (Figure 1A and 1D), it likely has some roles in the G-CSF dependent 

signaling pathways. In order to study the functional differences of Gab family proteins and to 

shed light on the essential properties of Gab2 in G-CSF induced neutrophil differentiation 

processes, Gab3 protein, another member of Gab family protein, was over-expressed in the 

neutrophil precursor cell line GM-I62-1 to compete with endogenous Gab2 protein for the G-

CSF induced signal transduction reactions and the effects of Gab3 over-expression on the G-

CSF dependent neutrophil differentiation were analyzed. Gab3 expression plasmid pBOS-

Gab3-Flag was constructed with carboxyl-terminal Flag-tag as shown in Figure 2A. The 

plasmid was stably transfected to GM-I62-1 cell and Gab3-expressing clones were isolated. 

Relative amounts of the exogenously expressed Gab3 protein as well as the endogenous Gab2 
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protein in one of the clone GM-Gab3-Flag (clone1-A-4) were analyzed by immunoblotting 

(Figure 2B). The amounts of Gab3-Flag protein in GM-Gab3 cells were about 12 times more 

than endogenous Gab3 and were comparable with the endogenous Gab2, estimated by the 

immunoblot analysis with increasing amounts of Flag-Gab2 protein expressed in Cos-7 cells 

as a control (date not show). 

The exogenously expressed Gab3 seems to compete with the endogenous Gab2 for the G-

CSF stimulated signaling in Gab3-overexpressing GM-Gab3 cells, as the tyrosine 

phosphorylation of Gab2 was largely suppressed along with the elevated phosphorylation of 

Gab3 by G-CSF stimulation (Figure 1A, 1C and 1D). Next, the effects of Gab3 

overexpression on the G-CSF-induced neutrophil differentiation were examined in GM-Gab3 

cells. When the neutrophil progenitor cell, GM-I62-1, is cultured in the presence of G-CSF, 

the cell proliferates for a few days, followed by the growth arrest which leads to the mature 

neutrophil with lobulated nucleus (Figure 3A and 3B) (Omura et al., 2002; Yoshikawa et al., 

1995). In contrast to GM-I62-1, Gab3-overexpressing GM-Gab3 cells kept proliferating in 

the G-CSF containing medium as the cells cultured in the medium containing IL-3 (Figure 

3A) and the neutrophil differentiation characterized by the nuclear morphological changes 

was largely blocked, as shown in Figure 3B and 3C. The inhibition of neutrophil 

differentiation in the medium with G-CSF by Gab3 overexpression was also observed in a 

couple of other clones stably transfected with Gab3 expression plasmid (data not shown). 

These observations suggested that overexpressed Gab3 in the neutrophil progenitor cell, GM-

I62-1, competed the endogenous Gab2 for the G-CSF stimulated differentiation signals, 

thereby inhibited the neutrophil differentiation. 

These inhibitory effects against neutrophil differentiation were not due to the 

overexpression of any Gab family protein but to the overexpression of Gab3 isoform, as the 

overexpression of Gab2 in GM-I62-1 at the equivalent level of the exogenously expressed 

Gab3 in GM-Gab3 cells had no detectable effect on the G-CSF-stimulated neutrophil 

differentiation (data not shown). 

 

3.3. Overexpression of a mutant form of Gab3 which lacks the SHP2-binding tyrosine 

residues had no inhibitory effect on the G-CSF-induced neutrophil differentiation.  

 

When cells are stimulated by growth factors or cytokines, the members of Gab family 

proteins are phosphorylated on their tyrosine residues. Among these residues, three tyrosine 
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(Tyr395, Tyr416, Tyr515 in mouse Gab3) residues are suggested to be the binding sites for 

p85 subunit of PI3-kinase (PI3-K) upon phosphorylation, resulting in the activation of PI3-K-

Akt signal transduction pathway. Other two tyrosine residues (Tyr542, Tyr569) located near 

the carboxyl terminus of the proteins are proposed to be the binding sites for SHP2, leading 

to the activation of the Ras-MAPK signaling pathway (Liu and Rohrschneider, 2002). In 

order to determine the signaling pathways involved in the inhibitory effects on the G-CSF 

stimulated neutrophil differentiation in GM-I62-1 cells by the Gab3 overexpression, the 

expression plasmids for Gab3 were constructed, of which either the tyrosine residues for the 

binding of p85 subunit of PI3-K or the residues for the binding of SHP2 were replaced by 

phenylalanines (Gab3-F3 and Gab3FF, respectively), and the plasmids were transfected to the 

neutrophil progenitor cell, GM-I62-1. The clones of the cells overexpressing these mutant 

Gab3 proteins were isolated and the overexpression was confirmed by immunoblot analysis 

(Figure 2B for GM-Gab3FF, no data was shown for Gab3-F3). The effects of the 

overexpression of these mutant Gab3 proteins on the G-CSF stimulated neutrophil 

differentiation were again examined. 

GM-Gab3-F3 cells overexpressing Gab3-F3, in which the three tyrosine residues for the 

binding of PI3-K were mutated to phenylalanines, continuously proliferated in the media 

containing G-CSF, that is, G-CSF-dependent growth suppression was still inhibited in GM-

Gab3-F3 cells (data not shown), although the proliferation rate decreased compared to that of 

GM-Gab3. Furthermore, G-CSF-induced nuclear morphological changes, were largely 

suppressed in GM-Gab3-F3 cells as in GM-Gab3 cells, compared to GM-I62-1 cells (data not 

shown), although nuclei of small number of GM-Gab3-F3 cells became lobulated in some 

degree. These nuclear lobulation observed in some GM-Gab3-F3 cells might be due to the 

detectable level of activation of PI3-K-Akt signaling pathway in GM-Gab3-F3 cells 

stimulated by G-CSF. Therefore, the overexpression of Gab3-F3 appeared to still have the 

inhibitory effects on the G-CSF dependent neutrophil differentiation as the Gab3-

overexpression did. 

In contrast to GM-Gab3-F3, GM-Gab3FF cells overexpressing Gab3FF-Flag protein, in 

which two tyrosine residues (Tyr542, Tyr569) for the SHP2 binding were mutated, 

differentiated to mature neutrophils in the medium containing G-CSF, that is, the 

proliferation of the GM-Gab3FF cells was suppressed (Figure 3A) and the nuclear 

morphology turned to be lobulated as GM-I62-1 cells which were cultured in the presence of 

G-CSF (Figure 3B and 3C). Therefore, the inhibition of neutrophil differentiation caused by 



 14 

the overexpression of Gab3 appeared to be due to the SHP2-Ras-MAPK signaling through 

the phosphorylated tyrosine residues of SHP2 binding sites (Tyr542 and Tyr569) of the Gab3 

protein. 

 

3.4. Overexpression of Gab3 caused the sustained MAPK activation by G-CSF 

stimulation. 

 

It has been reported that the binding of SHP2 to the phosphorylated tyrosine residues of 

Gab2 was negatively regulated by the phosphorylation of the particular Ser/Thr residues of 

Gab2, which was caused by the activation of Rsk or other kinases downstream of Ras-MAPK 

signaling pathway (Zhang et al., 2013). Therefore, the activation of MAPK resulting from the 

binding of SHP2 to the phosphorylated Gab2 is expected to be transient in cells harboring 

predominantly Gab2. However, there is no corresponding Rsk phosphorylation site in Gab3 

protein, suggesting that, unlike Gab2, Gab3 might not have the negative feedback regulation 

of tyrosine phosphorylation by Rsk downstream of Ras-MAPK signaling pathway, which 

would end up with the prolonged MAPK activation. In order to confirm the lack of negative 

feedback regulation of Ras-MAPK signaling in the Gab3-overexpressed cells, GM-Gab3, the 

G-CSF-dependent MAPK activation and the SHP2 binding to Gab2 or Gab3 proteins after G-

CSF stimulation were examined by immunoblot analysis of cell lysates or 

immunoprecipitates with either anti-Gab2 or anti-Gab3 antibodies (Figure 4A). In GM-I62-1 

cells (Figure 4A lanes 1-5), where Gab2 is the major isoform among Gab family proteins, 

SHP2 bound to Gab2 as early as 5 minutes after G-CSF stimulation, followed by its 

dissociation from Gab2 protein 20 minutes after the stimulation. On the other hand, in GM-

Gab3 cells (Figure 4A lanes 6-10), where Gab3 was overexpressed, SHP2 bound to Gab3, 

within five minutes after G-CSF stimulation. However, the SHP2 kept binding to Gab3 more 

than 35 minutes after the stimulation. Once SHP2 binds to the Gab proteins, Ras-MAPK 

signaling is activated. The activation, that is, phosphorylation of the activation loop of 

MAPK (Erk1/2), shown as p-MAPK in Figure 4A, was observed as early as 5 minutes after 

G-CSF stimulation. As in the case of the SHP2 binding to Gab2, the MAPK activation was 

down-regulated 20 minutes after G-CSF stimulation in GM-I62-1 cells. By contrast, the 

MAPK activation was prolonged in GM-Gab3 cells. The level of tyrosine-phosphorylated 

MAPK 35 min after G-CSF stimulation was higher in GM-Gab3 than in GM-I62-1 as shown 

in Figure 4B. The prolonged MAPK activation in GM-Gab3 cells likely caused the GM-Gab3 
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cells to continuously proliferate and suppressed the neutrophil differentiation in the medium 

containing G-CSF (Figure 3). 

On the other hand, no binding of SHP2 to Gab3 upon G-CSF stimulation was observed in 

GM-Gab3FF cells, where two tyrosine residues for binding of SHP2 of exogenously 

expressed Gab3 protein (Tyr542, Tyr569) were replaced by phenylalanine (Figure 4A, lanes 

11-15). Furthermore, very little amount of SHP2 binding to Gab2 was detected in GM-

Gab3FF cells, because G-CSF dependent tyrosine-phosphorylation of Gab2 was suppressed 

in GM-Gab3FF cells (Figure 4A, lanes 11-15) as in GM-Gab3 cells (Figure 1D) because of 

the competition for G-CSF-dependent signaling between endogenous Gab2 and exogenously 

overexpressed Gab3FF. Even in the GM-Gab3FF cells, some degree of time-dependent 

MAPK activation, i.e. MAPK phosphorylation, was observed, which was suppressed 35 

minutes after G-CSF stimulation (Figure 4A) as in GM-I62-1 cells. This MAPK activation 

was probably due to the residual phosphorylation of endogenous Gab2 protein, to which 

SHP2 bound, resulting in the lower degree of activation of Ras-MAPK signaling pathway. 

Therefore, as supposed from the lower and transient MAPK activation (MAPK 

phosphorylation) in GM-Gab3FF (Figure 4B), overexpression of Gab3FF had negligible 

inhibitory effects on the G-CSF dependent neutrophil differentiation characterized by the 

growth suppression and the nuclear lobulation in GM-Gab3FF cells (Figure 3). 

 

3.5. Pharmaceutical inhibitor against MEK can rescue GM-Gab3 cells from the Gab3-

overexpression-causing inhibition of G-CSF dependent neutrophil differentiation. 

 

In order to confirm the assumption that the sustained activation of MAPK caused by the 

Gab3 overexpression inhibited G-CSF dependent neutrophil differentiation, effects of 

pharmaceutical inhibitor against MEK, U0126, which inhibits MEK resulting in the 

suppression of MAPK (Erk1/2) phosphorylation was examined on the G-CSF induced 

neutrophil differentiation in GM-Gab3 cells. In the presence of 10 µM U0126 in the medium, 

the phosphorylation of MAPK (Erk1/2) was approximately 50% suppressed, while MAPK 

was inhibited more than 95% in the presence of 100 µM U0126, examined by the 

immunoblot with anti p-MAPK antibodies (data not shown). Then, effects of the MEK 

inhibitor on the G-CSF dependent neutrophil differentiation was examined. In the presence of 

10 µM U0126, GM-Gab3 cells ceased to proliferate 6 to 8 days after the cells were cultured 

in the medium containing G-CSF (Figure 5A), like GM-I62-1 cells shown in Figure 3A. The 
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nuclear morphological changes, that is, nuclear lobulation characteristic to the differentiated 

neutrophils, were also observed in GM-Gab3 cells cultured in the medium containing G-CSF 

in the presence of the MEK inhibitor U0126 (Figure 5B and 5C). These observations again 

demonstrated that the sustained MAPK activation due to the overexpression of Gab3 

inhibited the G-CSF induced neutrophil differentiation characterized by the G-CSF 

dependent proliferation-arrest as well as the induction of nuclear lobulation. Furthermore, the 

partial inhibition of MAPK by 10 µM of the MEK inhibitor, U0126, restored the G-CSF 

dependent neutrophil differentiation, at least partially, in GM-Gab3 cells.  

 

3.6. Gab3 overexpression in another neutrophil progenitor cell L-G also suppressed the 

G-CSF dependent neutrophil differentiation. 

 

Gab3-Flag and Gab3FF-Flag proteins were also exogenously expressed in another 

neutrophil progenitor cell, L-G. The amount of Gab3 proteins in LG-Gab3 and LG-Gab3FF 

were equivalent and about 2 times more than those in GM-Gab3 and GM-Gab3FF cells, 

respectively (Figure 6A). 

Cells were cultured either in the absence or in the presence of IL-3 or G-CSF. L-G cells 

underwent neutrophil differentiation in the medium containing G-CSF. LG-Gab3 cells, where 

Gab3 protein was overexpressed, continuously proliferated in the medium with G-CSF as in 

the medium with IL-3, showing that the overexpression of Gab3 inhibited G-CSF dependent 

neutrophil differentiation also in L-G cells. On the other hand, LG-Gab3FF cells still show 

the growth suppression in the medium containing G-CSF (Figure 6B) even though equivalent 

amount of Gab3 or Gab3FF proteins were exogenously expressed in LG-Gab3 and LG-

Gab3FF cells (Figure 6A).  

 L-G cells underwent differentiation with lobulated nucleus after 10 days culture in G-

CSF containing medium as GM-I62-1 cells did (Figure 6C and 6D). Overexpression of Gab3 

in L-G cells (LG-Gab3) suppressed the morphological changes of nucleus even after more 

than 10 days culture in the presence of G-CSF. In contrast, LG-Gab3FF cells showed the 

nuclear lobulation after 10 days culture in the medium containing G-CSF (Figure 6C and 

6D), that is, overexpression of Gab3FF had negligible inhibitory effects on the morphological 

changes typical to the neutrophil differentiation induced in the medium containing G-CSF. 

LG-Gab3FF cells went through apoptotic cell death, starting on day 8 after culturing in the 
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G-CSF-containing medium and very few cells survived on day 13, which made the 

examination of cell morphology very difficult. 

 These observations again suggested that the sustained activation of Gab3-SHP2-Ras-

MEK-MAPK signaling in the Gab3-overexpressed cells inhibited G-CSF-induced neutrophil 

differentiation. In other words, transient activation and following down-regulation of MAPK 

activities through Gab2, rather than Gab3 is necessary for normal neutrophil differentiation 

induced by G-CSF stimulation.  
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4. Discussion 

 

 In GM-I62-1 cells, G-CSF stimulation activates Jak family of kinases and in turn they 

tyrosine-phosphorylate other cellular proteins, resulting in the complex formation of 

signaling proteins, including G-CSF-receptor-Shc-Grb2-Gab2-SHP2, which activates Ras-

MAPK signaling. When Gab3 was overexpressed, Gab3 appeared to compete endogenous 

Gab2 protein for the binding to Grb2 adaptor protein and Grb2-Gab3-SHP2 complex was 

formed, instead of Grb2-Gab2-SHP2 complex.  

We have shown in this report that the overexpression of Gab3 in the neutrophil 

precursor cell, GM-I62-1, kept the cells to continuously proliferate in the G-CSF-containing 

medium and suppressed the G-CSF-dependent neutrophil differentiation, characterized by the 

nuclear lobulation. The inhibitory effects of the Gab3-overexpression on the G-CSF 

dependent neutrophil differentiation is apparently due to the sustained tyrosine 

phosphorylation of Gab3 and its binding to SHP2, followed by the prolonged MAPK 

activation by G-CSF stimulation. 

 The down-regulations of tyrosine phosphorylation of Gab2 following stimulation of 

growth factors or cytokines have been reported previously (Lynch and Daly, 2002; Zhang et 

al., 2013; Zhang et al., 2017). In human adenocarcinoma cell line MCF-7, heregulin–

activated ErbB receptor induced tyrosine phosphorylation of Gab2 leading to the activation 

of Ras-MAPK signaling as well as the PI-3K-Akt signaling. The activated Akt 

phosphorylated Ser159 of Gab2, resulting in the dephosphorylation of the tyrosine residues of 

Gab2. This negative feedback regulation of the signalling pathway in the epithelial cells 

restrains the further mitogenic responses of cells by heregulin stimulation (Lynch and Daly, 

2002).  In another report (Zhang et al., 2013), using human embryonic kidney cell line, 

HEK293, EGF stimulated tyrosine phosphorylation of Gab2 led the activation of Ras-MAPK 

signalling, resulting in the phosphorylation and activation of Rsk (p90 ribosomal S6 kinase) 

downstream of MAPK. The activated Rsk, in turn, phosphorylates three Ser residues of Gab2 

(Ser 160, Ser211 and Ser620 in human Gab2) and downregulated the recruitment of SHP2 to 

Gab2 resulting in the termination of MAPK activation. This feedback effects were reported to 

be specific to the SHP2 recruitment to Gab2, that is, binding of p85 subunit of PI3-K to Gab2 

was not affected by the Ser phosphorylation caused by Rsk (Zhang et al., 2013). Furthermore, 

same group of researchers reported that, using HEK293 and MCF-10A cell lines, EGF-

stimulated activation of Ras-MAPK signaling caused the phosphorylation of four Ser 
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residues, Ser469, Ser591, Ser612, and Ser614 of mouse Gab2, (Ser612 of mouse Gab2 

corresponds to Ser623 in human Gab2), which subsequently attenuated the phosphorylation 

and activation of Akt (PKB) downstream of PI3-K (Zhang et al., 2017). Differences of the 

down-regulatory mechanisms of Gab2 phosphorylation might be due to the differences of the 

cells and/or the growth factors to stimulate the cells. These reports demonstrated that the 

phosphorylation of certain Ser or Thr residues of Gab2 caused to downregulate either Ras-

MAPK or PI3-K-Akt signaling, or both signaling pathways. However, the negative feedback 

mechanisms of tyrosine phosphorylation of Gab2 protein and the participating phosphatases 

have not yet been reported. 

In the neutrophil precursor cell, GM-I62-1, where Gab2 protein is mainly expressed 

among the three members of Gab family proteins, G-CSF dependent tyrosine 

phosphorylation of Gab2 was transient and was down-regulated at 35 min after G-CSF 

stimulation (Figure 4A). This down-regulation was probably due to the same negative 

feedback mechanisms reported as described above. The downregulation of Gab2 tyrosine 

phosphorylation caused the suppression of SHP2-binding to Gab2 as well as of MAPK 

activation in GM-I62-1 cells (Figure 4). The resulting low MAPK activity allows GM-I62-1 

cell to differentiate to mature neutrophil in the medium containing G-CSF. 

Alignment of amino acid sequences of Gab2 and another member of the Gab family 

protein, Gab3, revealed that the most Ser or Thr residues in Gab2 which reported to be 

phosphorylated by either Akt, Rsk or MAPK as described above (Lynch and Daly, 2002; 

Zhang et al., 2013; Zhang et al., 2017) are not conserved in Gab3, except Ser612 which 

reported to be phosphorylated by MAPK (Zhang et al., 2017). Lack of these Ser/Thr 

phosphorylation sites in Gab3 suggested that the signals transduced through Gab3 protein 

would not undergo negative feedback regulation. Indeed, tyrosine phosphorylation of Gab3 

by G-CSF stimulation was stronger and prolonged for longer periods of time in GM-Gab3, 

where Gab3 was over-expressed (Figure 4A). The resulting prolonged higher MAPK 

activation appeared to support the sustained proliferation and to inhibit neutrophil 

differentiation characterized by nuclear lobulation in GM-Gab3 cells. The sustained 

proliferation and inhibition of neutrophil differentiation in the medium containing G-CSF 

was not observed in Gab2-overexpressed cells (data not shown). Therefore, the suppression 

of neutrophil differentiation observed in this report was exclusively due to Gab3 and was not 

observed in cells where Gab2 was overexpressed in the equivalent amount. 
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It has been reported the Gab2-/- knockout mouse is generally healthy, lacks allergic 

response (Gu et al., 2001) and defects in the mast cell development (Nishida et al., 2002). 

There is no difference observed in red blood cell, lymphocyte, neutrophil and monocyte 

counts in the steady state peripheral blood between wild-type and Gab2-/- mice (Zhang et al., 

2007). However, Gab2-defficent hematopoietic cells are deficient in cytokine responsiveness, 

that is, they showed the reduction of total CFU-C as well as CFUs of individual cell types 

including CFU-G in methylcellulose progenitor assay in the presence of several cytokines 

(Zhang et al., 2007). Therefore, Gab2 is necessary for the efficient hematopoietic cell 

responses to these cytokines. Nonetheless, it has not been clear which functional properties of 

Gab2 are essential and cannot be replaced by other member of Gab family proteins, even 

though they share the structural similarities. In this report, we found that the tyrosine 

phosphorylation of Gab2 is kept low by its negative feedback system and thereby activation 

of MAPK downstream of Gab2 is kept low, which is necessary for the G-CSF-induced 

neutrophil differentiation. 

Enhancement of proliferation activity caused by overexpression of Gab3 protein 

was reported in some tumor cells (Jia et al., 2017; Xiang et al., 2017). Overexpression of 

Gab2 has also been reported in ovarian cancer and hepatocellular carcinoma (Cheng et al., 

2017; Duckworth et al., 2016). However, in the neutrophil precursor cell, GM-I62-1, Gab2 

overexpression did not affect the G-CSF dependent neutrophil differentiation, probably due 

to the difference between myeloid cells and epithelial cells. 

It has been reported that sustained and enhanced activation of MAPK (Erk1/2) 

inhibits granulocyte differentiation and augments the commitment to monocyte in myeloid 

precursor cells (Carras et al., 2016; Hu et al., 2015; Jack et al., 2009). In this report, 

overexpression of Gab3 in GM-I62-1 cells resulted in the sustained activation of MAPK in 

the medium containing G-CSF. Therefore, in Gab3-overexpressing GM-Gab3 cells, G-CSF 

stimulation might confer the cells to monocytic development and inhibit neutrophilic 

differentiation with continuous proliferation and suppressed nuclear lobulation. Whether the 

GM-Gab3 cells cultured in the G-CSF-containing medium acquire monocytic properties 

remains to be elucidated.  

Previously, S. J. Corey and his colleagues reported that the Src family kinase Lyn 

forms a complex with Gab2 and that G-CSF stimulation induced Gab2 phosphorylation and 

its association with a phosphatase, SHP2, which in turn activated Lyn (Futami et al., 2011).  

They suggested that the activation of Lyn through the interaction of Gab2 may be involved in 
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the G-CSF induced Ba/F3 cell proliferation and/or differentiation. In order to examine the 

activation of Lyn, first, we analyzed the association of Lyn with Gab2, Gab3 or Gab3FF in 

GM-I62-1, GM-Gab3 and GM-Gab3FF cells by immunoprecipitation with anti-Lyn 

antibodies followed by the immunoblotting with either anti-Gab2 or anti-Gab3 antibodies. 

The binding of Lyn to Gab2 was observed in GM-I62-1 cells. However, the association of 

Lyn with Gab3 or Gab3FF was hardly detected in GM-Gab3 or GM-Gab3FF, even though 

the amounts of the overexpressed Gab3 and Gab3FF were more than the endogenous Gab2 in 

these cells. Furthermore, the activation of Lyn, that is, the phosphorylation of the tyrosine 

residue (Tyr397) of the activation-loop of Lyn kinase in GM-Gab3 and GM-Gab3FF was 

significantly low compared to that of GM-I62-1 cell upon G-CSF stimulation. These 

observations suggested that the properties of proliferation and differentiation observed in 

GM-I62-1, GM-Gab3 and GM-Gab3FF cells in G-CSF containing media were not related to 

the Lyn kinase activities.  

Same group of researchers reported that G-CSF induced Gab2 phosphorylation is Lyn 

kinase dependent using pharmacological Src kinase inhibitors (Zhu et al., 2004). We 

examined the G-CSF dependent Gab2 tyrosine phosphorylation in the presence of 10 µM 

PP1 or 3 µM PP2. Both inhibitors inhibited the phosphorylation of the tyrosine residue in the 

activation-loop of Lyn. However, no inhibition of G-CSF induced Gab2 tyrosine 

phosphorylation was observed in the presence of these inhibitors in GM-I62-1 cells. 

Therefore, Lyn kinase activity did not appear to be involved in the G-CSF dependent 

phosphorylation of Gab family proteins and the induction of the neutrophil differentiation in 

GM-I62-1 cells. 

We reported here that the activation of initial Ras-MAPK signaling, which should 

be followed by its downregulation through the dephosphorylation of Gab2 and dissociation of 

SHP2 from it, is necessary for the G-CSF dependent neutrophil differentiation. Furthermore, 

the sustained activation of MAPK through the overexpressed Gab3 rather than the 

endogenous Gab2 inhibited the G-CSF-dependent neutrophil differentiation. 
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9. Figure Legends 

 

Figure 1.  Tyrosine phosphorylation of Gab2 and Gab3 in GM-I62-1 and GM-Gab3 cells 

by G-CSF stimulation. (A) Cells were either unstimulated (lanes1, 3) or stimulated (lanes 2, 

4) with G-CSF and proteins were separated with SDS-PAGE, followed by immunoblot with 

antibodies against phosphotyrosine (4G10). (B), (C) Antibodies were stripped off from the 

filter and re-probed with antibodies against Gab2 or Gab3 protein. Migration positions of 

Gab2 and Gab3 proteins in (A) are indicated with arrows on the right. GM-I62-1 (lanes 1, 2), 

GM-Gab3 (lanes 3, 4). Migration positions of molecular weight marker proteins ware 

indicated on the left in (A). (D) Gab2 and Gab3 proteins were immunoprecipitated with anti-

Gab2 or anti-Gab3 antibodies from cell lysates in (A) and were subjected to the immunoblot 

with antibodies against phosphotyrosine (4G10). Antibodies were stripped off and each filter 

was reprobed with antibodies against either Gab2 or Gab3. GM-I62-1 (lanes 1, 2), GM-Gab3 

(lanes 3, 4). 

 

Figure 2. Schematic structures of Gab proteins and their expressions in Gab3-

overexpressed cell lines. (A) Structures of Gab2, Gab3-Flag and its mutant, Gab3FF-Flag, 

which lacks SHP2 binding sites (Y542F, Y569F). Positions of phosphatidylinositol-3 kinase 

(PI3-K) and SHP2 binding sites are also shown on the top. Flag-tag is attached to the C-

terminus of Gab3 proteins. PH-domains and proline-rich regions which were proposed to be 

the SH3-binding sites are shown by underscores. Amino acid number is shown under each 

protein. (B) Expression of Gab2, Gab3-Flag and Gab3FF-Flag in GM-I62-1 and its Gab3-

Flag-transfected cell lines, GM-Gab3 and GM-Gab3FF. Equivalent amounts of proteins in 

cell lysates were separated by SDS-PAGE, followed by sequential immunoblotting with 

antibodies against Flag-tag, Gab3, Gab2 or beta-actin. Migrate positions of endogenous Gab2 

and Gab3 proteins are indicated by arrows on the left. Asterisk indicates other cellular protein 

than Gab proteins which reacted with the antibodies. Immunoblot with anti beta-actin 

antibody indicated the equal loading of cell lysate proteins. Lane 1: GM-I62-1, lane 2: GM-

Gab3, lane 3: GM-Gab3FF. 

 

Figure 3. Growth properties and morphological changes of GM-I62-1 and its 

transfectant cell lines overexpressing Gab3 or Gab3FF. (A) Cells, which had been maintained 

in the medium containing IL-3, were washed to remove IL-3 and were cultured in the media 



 29 

either without (factor free (open	triangle) or with IL-3 (open circle) or G-CSF (closed 

circle). Cell numbers were counted after trypan blue staining. Standard errors are shown with 

error bars which were calculated from more than 4 experiments.  (B) Cells were cultured in 

the medium containing IL-3 or G-CSF for 10 or 13 days and were stained with Wright-

Giemsa solution and cellular morphologies were observed under microscope. One set of 

results among three experiments are shown. Bar shows 20 micro meters.  (C) Quantitative 

analysis of the morphological changes shown in (B).  More than 100 cells in each preparation 

from more than 3 independent experiments were inspected under a microscope and classified 

into 4 categories (a-d) indicated at the bottom.  

 

Figure 4. G-CSF-stimulation dependent binding of SHP2 to the Gab proteins and the 

subsequent phosphorylation of MAPK in GM-I62-1, GM-Gab3 and GM-Gab3FF. (A) Cells 

were starved for cytokine for 5 hours, then either unstimulated or stimulated with G-CSF for 

the indicated time shown on the top. Gab2 and Gab3 proteins were immunoprecipitated with 

the corresponding antibodies from the cell lysates and the precipitated proteins were 

separated by SDS-PAGE and analyzed by immunoblot with anti-SHP2 antibodies for the 

binding of SHP2 to Gab proteins or with anti-phosphotyrosine antibody (4G10) for the 

tyrosine phosphorylation of Gab proteins. The amounts of precipitated Gab proteins were 

analyzed with anti-Gab2 and anti-Gab3 antibodies shown on the bottom of the figure. G-CSF 

dependent phosphorylation of MAPK (Erk1/2) and MAPK protein contents in the cell lysates 

were also examined by immunoblots with anti-phospho MAPK and anti-MAPK antibodies. 

Equivalent amount of SHP2 in each cell lysate was confirmed with the immunoblot with anti-

SHP2 antibodies. (B) Quantitative analysis of phosphorylation of MAPK by G-CSF 

stimulation in (A). The intensities of phospho-MAPK bands (p-Erk1 and p-Erk2) in the 

immunoblots were normalized by the intensities of the MAPK bands (Erk1 and Erk2). 

Relative phosphorylation was calculated compared to the one in the GM-I62-1 cells 

stimulated by G-CSF for 5 min and shown in the graph. Standard deviations were calculated 

with three independent experiments and data are presented as mean ± S.D.  p-values were 

calculated by Student’s paired t-test and the values of < 0.05 and <0.01 were shown as * and 

** and were considered significant. 

 

Figure 5. Effects of U0126 on the growth properties and the morphological changes of 

GM-Gab3 cells. (A) GM-Gab3 cells were cultured without cytokine (factor free (open 
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triangle)), or with IL-3 (open circle) or G-CSF (closed circle). Twenty-four hours after 

starting culture, either no inhibitor, MEK inhibitor U0126, or the vehicle solution, DMSO, 

was added to the medium at 1/200th of the volume at the concentration of 10 micro molar 

indicated at the bottom by arrows. Cells were stained with trypan blue and cell number was 

counted under microscope. Standard errors were calculated from more than 3 experiments 

and shown as error bars. (B) Cells which were cultured in the presence of IL-3 or G-CSF for 

10 days and 13 days were collected on the glass slides and stained with Wright-Giemsa 

solution in (A). Scale bar indicates 20 micro meters. (C) Quantitative analysis of the 

morphological changes shown in (B).  More than 100 cells in each preparation from more 

than 3 independent experiments were inspected under a microscope and classified into 4 

categories (a-d) indicated at the bottom.  

 

Figure 6. Growth properties and G-CSF dependent morphological changes of another 

granulocyte progenitor cell line, L-G and its Gab3-Flag or Gab3FF-Flag overexpressing cell 

lines, LG-Gab3 and LG-Gab3FF. (A) Proteins of equivalent amount of cell lysates prepared 

from GM-I62-1 and L-G cells over-expressing Gab3 were separated by SDS-PAGE, 

followed by immunoblot analysis with antibodies against either Flag-tag, Gab2, Gab3 or 

beta-actin. Arrows on the left indicate the migrating position of endogenous Gab2 and Gab3 

proteins. Asterisk shows a cellular protein with which anti-Gab3 antibodies cross-reacted. 

Immunoblot with anti beta-actin antibody showed the equal loading of proteins. (B) Growth 

properties of L-G, LG-Gab3 and LG-Gab3FF cells in the medium without cytokine (factor 

free (open triangle)), with IL-3 (open circle) or G-CSF (closed circle) as Figure 3A. Standard 

errors were calculated from more than 3 experiments and shown as error bars. (C) 

Morphological changes of cells in (B) either cultured in the medium with IL-3 or G-CSF for 

10 or 13 days were analyzed under a microscope as in Figure 3B. LG-Gab3FF cells 

underwent apoptosis when they were cultured in the medium containing G-CSF for more 

than 10 days. At day 13, too few cells left survived to analyze under microscope. Scale bar 

indicates 20 micro meters. (D) Quantitative analysis of cell morphology in (C). More than 

100 cells from 2 independent experiments were analyzed and classified as in Figure 3.  

 

    


