5 research outputs found

    Development of FAIR conductor and HTS coil for fusion experimental device

    Get PDF
    This study is aimed at the development of high-temperature superconducting (HTS) magnets for application in a fusion experimental device next to the Large Helical Device (LHD). By applying the features of an HTS, high current density and high stability can be balanced. As a candidate conductor, REBCO tapes and pure aluminum sheets are laminated and placed in the groove of an aluminum alloy jacket with a circular cross-section, after joining a lid to the jacket using friction stir welding, and twisting the conductor to homogenize its electrical and mechanical properties. The FAIR conductor derives its name from the processes and materials used in its development: Friction stir welding, an Aluminum alloy jacket, Indirect cooling, and REBCO tapes. Initially, the degradation of the critical current of the FAIR conductor is observed, which was eventually resolved. The development status of the FAIR conductor has been reported

    Improvement of Ic degradation of HTS Conductor (FAIR Conductor) and FAIR Coil Structure for Fusion Device

    Get PDF
    As a high-temperature superconducting (HTS) conductor with a large current capacity applicable to a nuclear fusion experimental device, REBCO (REBa 2 CuO y ) tapes and high-purity aluminum sheets are alternately laminated, placed in a groove of an aluminum alloy jacket having a circular cross section, and the lid is friction-stir welded. To make the current distribution and mechanical characteristics uniform, the conductor is twisted at the end of the manufacturing process. In the early prototype conductor, when the I c was measured in liquid nitrogen under self-magnetic field conditions, I c degradations were observed from the beginning, and the characteristic difference between the two prototype samples under the same manufacturing conditions were large. Furthermore, I c degradation was progressed by repeating the thermal cycle from room temperature to liquid nitrogen temperature. This I c degradation did not occur uniformly in the longitudinal direction of the conductor but was caused by local I c degradation occurring at multiple locations. If the conductor was not manufactured uniformly in the longitudinal direction, the difference in thermal shrinkage between the REBCO tape and the aluminum alloy jacket caused local stress concentration in the REBCO tape and buckling occurred. Element experiments to explain this mechanism were conducted to clarify the conditions under which I c degradation due to buckling occurs. Then prototype conductors were tested with improved manufacturing methods, and as a result, I c degradation could be suppressed to 20% or less. We have achieved the prospect of producing a conductor with uniform characteristics in the longitudinal direction
    corecore