365 research outputs found

    Low-temperature specific heat for ferromagnetic and antiferromagnetic orders in CaRu1-xMnxO3

    Full text link
    Low-temperature specific heat of CaRu1-xMnxO3 was measured to clarify the role of d electrons in ferromagnetic and antiferromagnetic orders observed above x=0.2. Specific heat divided by temperature C_p/T is found to roughly follow a T^2 function, and relatively large magnitudes of electronic specific heat coefficient gamma were obtained in wide x range. In particular, gamma is unchanged from the value at x=0 (84 mJ/K^2 mol) in the paramagnetic state for x<=0.1, but linearly reduced with increasing x above x= 0.2. These features of gamma strongly suggest that itinerant d electrons are tightly coupled with the evolution of magnetic orders in small and intermediate Mn concentrations.Comment: 4 pages, 2 figures, to be published in J. Phys.: Conf. Ser. (SCES 2011, Cambridge, UK

    Iron Fluorescent Line Emission from Black Hole Accretion Disks with Magnetic Reconnection-Heated Corona

    Full text link
    We investigate the iron Kα\alpha fluorescent line produced by hard X-ray photons from magnetic reconnection-heated corona. The hot corona with temperature being about 10910^9K can irradiate the underlying disk with a continuum X-ray spectrum produced via thermal Comptonization. Then the iron atoms in the disk photoelectrically absorb X-ray photons and radiate Kα\alpha line photons. Therefore, the activity of corona is responsible to the iron line emission from the underlying disk. In previous studies, oversimplified X-ray photon sources are often assumed above the disk in order to compute the iron line profile or power-law line emissivity profiles are assumed with an index being a free parameter. We adopt the more realistic corona model constructed by Liu et al. in which the corona is heated by magnetic energy released through the reconnection of magnetic flux loops and which has no free parameter. Then the accretion energy is dominantly dissipated in the corona, in which X-ray photons are efficiently produced and irradiate the underlying disk. We find the local emmisivity of iron line on the disk is approximated as FKα(r)r5F_{{\rm K}\alpha}(r)\propto r^{-5}. The iron line profiles derived from this model give excellent fits to the observational data of MCG-6-30-15 with the profiles derived theoretically for i30i\sim 30^{\circ} for energy band 4-7keV. Possible origins of line variability are briefly discussed.Comment: 17 pages, 7 figures, accepted for publication in Ap

    Neutrino Cooled Disk and Its Stability

    Full text link
    We investigate the structure and stability of hypercritical accretion flows around stellar-mass black holes, taking into account neutrino cooling, lepton conservation, and firstly a realistic equation of state in order to properly treat the dissociation of nuclei. We obtain the radial distributions of physical properties, such as density, temperature and electron fraction, for various mass accretion rates 0.110Ms10.1\sim 10M_{\odot}{\rm s}^{-1}. We find that, depending on mass accretion rates, different physics affect considerably the structure of the disk; most important physics is (1) the photodissociation of nuclei around r100rgr\sim 100r_g for relatively low mass accretion rates (M˙0.010.1Ms1\dot{M}\sim 0.01-0.1M_{\odot} {\rm s}^{-1}), (2) efficient neutrino cooling around r10100rgr\sim 10-100r_g for moderately high mass accretion rate (M˙0.21.0Ms1\dot{M}\sim 0.2-1.0M_{\odot}{\rm s}^{-1}), and (3) neutrino trapping (r310rgr\sim 3-10r_g) for very high mass accretion rate (M˙2.0Ms1\dot{M}\gtrsim 2.0M_{\odot}{\rm s}^{-1}). We also investigate the stability of hypercritical accretion flows by drawing the thermal equilibrium curves, and find that efficient neutrino cooling makes the accretion flows rather stable against both thermal and viscous modes.Comment: 26 pages, 28 figures, Accepted for publication in Ap

    Clear Experimental Signature of Charge-Orbital density wave in Nd1x_{1-x}Ca1+x_{1+x}MnO4_{4}

    Full text link
    Single Crystals of Nd1x_{1-x}Ca1+x_{1+x}MnO4_{4} have been prepared by the travelling floating-zone method, and possible evidence of a charge -orbital density wave in this material presented earlier [PRB68,092405 (2003)] using High Resolution Electron Microscopy [HRTEM] and Electron Diffraction [ED]. In the current note we present direct evidence of charge-orbital ordering in this material using heat capacity measurements. Our heat capacity measurements indicate a clear transition consistent with prior observation. We find two main transitions, one at temperature TH=310314T_{_H}=310-314 K, and other at TA=143T_{_A}=143 K. In addition, we may also conclude that there is a strong electron-phonon coupling in this material.Comment: 7 pages, 8 figure

    Insulator-to-metal transition in (

    Full text link

    Generalized Involution Models for Wreath Products

    Get PDF
    We prove that if a finite group HH has a generalized involution model, as defined by Bump and Ginzburg, then the wreath product HSnH \wr S_n also has a generalized involution model. This extends the work of Baddeley concerning involution models for wreath products. As an application, we construct a Gelfand model for wreath products of the form ASnA \wr S_n with AA abelian, and give an alternate proof of a recent result due to Adin, Postnikov, and Roichman describing a particularly elegant Gelfand model for the wreath product \ZZ_r \wr S_n. We conclude by discussing some notable properties of this representation and its decomposition into irreducible constituents, proving a conjecture of Adin, Roichman, and Postnikov's.Comment: 29 page

    An effective spin-orbital Hamiltonian for the double perovskite Sr2_2FeW O6_6: Derivation of the phase diagram

    Full text link
    We formulate a superexchange theory of insulating double-perovskite compounds such as Sr2_2FeWO6_6. An effective spin-orbital Hamiltonian is derived in the strong coupling limit of Hubbard model for d-electrons on Fe and W ions. The relevant degrees of freedom are the spins S=2 and the three-fold orbital degeneracy of Fe2+^{2+}-ions. W-sites are integrated out by means of a fourth-order perturbative expansion. The magnetically and orbitally ordered ground states of the effective Hamiltonia n are discussed as a function of the model parameters. We show that for realistic values of such parameters the ground state is antiferromagnetic, as experimentally observed. The order found is of type-II, consisting of \{111\} ferromagnetic planes stac ked antiferromagnetically. The orbital order energy scale found is one order of magnitude less than the spi n one.Comment: 12 pages, 4 figure

    Dead Zone Formation and Nonsteady Hyperaccretion in Collapsar Disks : A Possible Origin of Short-Term Variability in the Prompt Emission of Gamma-Ray Bursts

    Get PDF
    The central engine of gamma-ray bursts (GRBs) is believed to be a hot and dense disk with hyperaccretion onto a few solar-mass black hole. We investigate where the magnetorotational instability (MRI) actively operates in the hyperaccretion disk, which can cause angular momentum transport in the disk. The inner region of hyperaccretion disks can be neutrino opaque, and the energy- and momentum-transport by neutrinos could affect the growth of the MRI significantly. Assuming reasonable disk models and a weak magnetic field B1014GB \lesssim 10^{14} \rm{G}, it is found that the MRI is strongly suppressed by the neutrino viscosity in the inner region of hyperaccretion disks. On the other hand, the MRI can drive active MHD turbulence in the outer neutrino-transparent region regardless of the field strength. This suggests that the baryonic matter is accumulated into the inner dead zone where the MRI grows inactively and the angular momentum transport is inefficient. When the dead zone gains a large amount of mass and becomes gravitationally unstable, intense mass accretion onto the central black hole would occur episodically through the gravitational torque. This process can be a physical mechanism of the short-term variability in the prompt emission of GRBs. Finally, the origin of flaring activities in the X-ray afterglow is predicted in the context of our episodic accretion scenario.Comment: 11pages, 4figures. Accepted for publication in the Astrophysical Journa
    corecore