20 research outputs found

    Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved in the sulfated fucan biosynthesis pathway

    Get PDF
    The brown alga, Nemacystus decipiens ("ito-mozuku" in Japanese), is one of the major edible seaweeds, cultivated principally in Okinawa, Japan. N. decipiens is also a significant source of fucoidan, which has various physiological activities. To facilitate brown algal studies, we decoded the ~154 Mbp draft genome of N. decipiens Onna-1 strain. The genome is estimated to contain 15,156 protein-coding genes, ~78% of which are substantiated by corresponding mRNAs. Mitochondrial genes analysis showed a close relationship between N. decipiens and Cladosiphon okamuranus. Comparisons with the C. okamuranus and Ectocarpus siliculosus genomes identified a set of N. decipiens-specific genes. Gene ontology annotation showed more than half of these are classified as molecular function, enzymatic activity, and/or biological process. Extracellular matrix analysis revealed domains shared among three brown algae. Characterization of genes that encode enzymes involved in the biosynthetic pathway for sulfated fucan showed two sets of genes fused in the genome. One is a fusion of L-fucokinase and GDP-fucose pyrophosphorylase genes, a feature shared with C. okamuranus. Another fusion is between an ST-domain-containing gene and an alpha/beta hydrolase gene. Although the function of fused genes should be examined in future, these results suggest that N. decipiens is another promising source of fucoidan

    Comparative genomics of four strains of the edible brown alga, Cladosiphon okamuranus

    Get PDF
    BACKGROUND: The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is one of the most important edible seaweeds, and it is cultivated for market primarily in Okinawa, Japan. Four strains, denominated S, K, O, and C, with distinctively different morphologies, have been cultivated commercially since the early 2000s. We previously reported a draft genome of the S-strain. To facilitate studies of seaweed biology for future aquaculture, we here decoded and analyzed genomes of the other three strains (K, O, and C). RESULTS: Here we improved the genome of the S-strain (ver. 2, 130 Mbp, 12,999 genes), and decoded the K-strain (135 Mbp, 12,511 genes), the O-strain (140 Mbp, 12,548 genes), and the C-strain (143 Mbp, 12,182 genes). Molecular phylogenies, using mitochondrial and nuclear genes, showed that the S-strain diverged first, followed by the K-strain, and most recently the C- and O-strains. Comparisons of genome architecture among the four strains document the frequent occurrence of inversions. In addition to gene acquisitions and losses, the S-, K-, O-, and C-strains possess 457, 344, 367, and 262 gene families unique to each strain, respectively. Comprehensive Blast searches showed that most genes have no sequence similarity to any entries in the non-redundant protein sequence database, although GO annotation suggested that they likely function in relation to molecular and biological processes and cellular components. CONCLUSIONS: Our study compares the genomes of four strains of C. okamuranus and examines their phylogenetic relationships. Due to global environmental changes, including temperature increases, acidification, and pollution, brown algal aquaculture is facing critical challenges. Genomic and phylogenetic information reported by the present research provides useful tools for isolation of novel strains

    A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster

    Get PDF
    Homologous chromosomes in the diploid genome are thought to contain equivalent genetic information, but this common concept has not been fully verified in animal genomes with high heterozygosity. Here we report a near-complete, haplotype-phased, genome assembly of the pearl oyster, Pinctada fucata, using hi-fidelity (HiFi) long reads and chromosome conformation capture data. This assembly includes 14 pairs of long scaffolds (>38 Mb) corresponding to chromosomes (2n = 28). The accuracy of the assembly, as measured by an analysis of k-mers, is estimated to be 99.99997%. Moreover, the haplotypes contain 95.2% and 95.9%, respectively, complete and single-copy BUSCO genes, demonstrating the high quality of the assembly. Transposons comprise 53.3% of the assembly and are a major contributor to structural variations. Despite overall collinearity between haplotypes, one of the chromosomal scaffolds contains megabase-scale non-syntenic regions, which necessarily have never been detected and resolved in conventional haplotype-merged assemblies. These regions encode expanded gene families of NACHT, DZIP3/hRUL138-like HEPN, and immunoglobulin domains, multiplying the immunity gene repertoire, which we hypothesize is important for the innate immune capability of pearl oysters. The pearl oyster genome provides insight into remarkable haplotype diversity in animals

    Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes

    Get PDF
    The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures

    Genome‐wide SNP genotyping reveals hidden population structure of an acroporid species at a subtropical coral island: Implications for coral restoration

    Get PDF
    1. It is essential to consider genetic composition for both conventional coral restoration management and for initiating new interventions to counter the significant global decline in living corals. Population genetic structure at a fine spatial scale should be carefully evaluated before implementing strategies to achieve self-sustaining ecosystems via coral restoration. 2. This study investigated the population genetic structure of two acroporid species at Kume Island, Okinawa, Japan. There were 140 colonies of Acropora digitifera collected from seven study sites, and 81 colonies of Acropora tenuis from six sites. In total, 384 single nucleotide polymorphism (SNP) loci for A. digitifera and 470 SNPs for A. tenuis were obtained using a comparatively economical technique, Multiplexed ISSR Genotyping by sequencing. 3. Observed heterozygosity was significantly lower than expected heterozygosity at all SNP sites in both acroporid species, suggesting deficient genetic diversity possibly caused by past massive coral bleaching. Even though both species are broadcast spawners, the population structure was different in the two species. No detectable structure was evident in A. digitifera, but two distinct clades were found in A. tenuis. The genetic homogeneity of A. digitifera at Kume Island suggests that this species could be used as a focal species for active restoration in terms of genetic differentiation at this island. By contrast, A. tenuis unexpectedly included two distinct clades with little or no admixture within a small study area, possibly representing two reproductively isolated cryptic species. Thus, when using A. tenuis, it would be prudent to avoid disturbing the genetic composition of wild populations until this question is answered.journal articl

    Color morphs of the coral, Acropora tenuis, show different responses to environmental stress and different expression profiles of fluorescent-protein genes

    Get PDF
    Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates (Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs. In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins (CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs, (b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs, and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this coral

    Polyzoa is back: The effect of complete gene sets on the placement of Ectoprocta and Entoprocta

    Get PDF
    The phylogenomic approach has largely resolved metazoan phylogeny and improved our knowledge of animal evolution based on morphology, paleontology, and embryology. Nevertheless, the placement of two major lophotrochozoan phyla, Entoprocta (Kamptozoa) and Ectoprocta (Bryozoa), remains highly controversial: Originally considered as a single group named Polyzoa (Bryozoa), they were separated on the basis of morphology. So far, each new study of lophotrochozoan evolution has still consistently proposed different phylogenetic positions for these groups. Here, we reinvestigated the placement of Entoprocta and Ectoprocta using highly complete datasets with rigorous contamination removal. Our results from maximum likelihood, Bayesian, and coalescent analyses strongly support the topology in which Entoprocta and Bryozoa form a distinct clade, placed as a sister group to all other lophotrochozoan clades: Annelida, Mollusca, Brachiopoda, Phoronida, and Nemertea. Our study favors the evolutionary scenario where Entoprocta, Cycliophora, and Bryozoa constitute one of the earliest branches among Lophotrochozoa and thus supports the Polyzoa hypothesis
    corecore