7,588 research outputs found

    Universal conductance in quantum wires in the presence of Umklapp scattering

    Full text link
    The effects of Umklapp scattering on the zero-temperature conductance in one-dimensional quantum wires are reexamined by taking into account both the screening of external potential and the non-uniform chemical potential shift due to electron-electron interaction. It is shown that in the case away from half-filling the conductance is given by the universal value, 2e2/h2e^2/h, even in the presence of Umklapp scattering, owing to these renormalization effects of external potential. The conclusion is in accordance with the recent claim obtained for the system with non-interacting leads being attached to a quantum wire.Comment: 5 pages, to be published in Euro. Phys. J.

    Zero-temperature Phase Diagram of Two Dimensional Hubbard Model

    Full text link
    We investigate the two-dimensional Hubbard model on the triangular lattice with anisotropic hopping integrals at half filling. By means of a self-energy functional approach, we discuss how stable the non-magnetic state is against magnetically ordered states in the system. We present the zero-temperature phase diagram, where the normal metallic state competes with magnetically ordered states with (Ï€,Ï€)(\pi, \pi) and (2Ï€/3,2Ï€/3)(2\pi/3, 2\pi/3) structures. It is shown that a non-magnetic Mott insulating state is not realized as the ground state, in the present framework, but as a meta-stable state near the magnetically ordered phase with (2Ï€/3,2Ï€/3)(2\pi/3, 2\pi/3) structure.Comment: 4 pages, 4 figure

    Solutions to the Multi-Component 1/R Hubbard Model

    Full text link
    In this work we introduce one dimensional multi-component Hubbard model of 1/r hopping and U on-site energy. The wavefunctions, the spectrum and the thermodynamics are studied for this model in the strong interaction limit U=∞U=\infty. In this limit, the system is a special example of SU(N)SU(N) Luttinger liquids, exhibiting spin-charge separation in the full Hilbert space. Speculations on the physical properties of the model at finite on-site energy are also discussed.Comment: 9 pages, revtex, Princeton-May1

    Renormalized Harmonic-Oscillator Description of Confined Electron Systems with Inverse-Square Interaction

    Full text link
    An integrable model for SU(ν\nu) electrons with inverse-square interaction is studied for the system with confining harmonic potential. We develop a new description of the spectrum based on the {\it renormalized harmonic-oscillators} which incorporate interaction effects via the repulsion of energy levels. This approach enables a systematic treatment of the excitation spectrum as well as the ground-state quantities.Comment: RevTex, 7 page

    Entropy and Barrier-Hopping Determine Conformational Viscoelasticity in Single Biomolecules

    Get PDF
    Biological macromolecules have complex and non-trivial energy landscapes, endowing them a unique conformational adaptability and diversity in function. Hence, understanding the processes of elasticity and dissipation at the nanoscale is important to molecular biology and also emerging fields such as nanotechnology. Here we analyse single molecule fluctuations in an atomic force microscope (AFM) experiment using a generic model of biopolymer viscoelasticity that importantly includes sources of local `internal' conformational dissipation. Comparing two biopolymers, dextran and cellulose, polysaccharides with and without the well-known `chair-to-boat' transition, reveals a signature of this simple conformational change as minima in both the elasticity and internal friction around a characteristic force. A calculation of two-state populations dynamics offers a simple explanation in terms of an elasticity driven by the entropy, and friction by barrier-controlled hopping, of populations on a landscape. The microscopic model, allows quantitative mapping of features of the energy landscape, revealing unexpectedly slow dynamics, suggestive of an underlying roughness to the free energy.Comment: 25 pages, 7 figures, naturemag.bst, modified nature.cls (naturemodified.cls
    • …
    corecore