6,561 research outputs found
Generalized Equivalence Principle in Extended New General Relativity
In extended new general relativity, which is formulated as a reduction of
gauge theory of gravity whose gauge group is the covering
group of the Poincar\'e group, we study the problem of whether the total
energy-momentum, total angular momentum and total charge are equal to the
corresponding quantities of the gravitational source. We examine this for
charged axi-symmetric solutions of gravitational field equations. Our main
concern is the restriction on the asymptotic form of the gravitational field
variables imposed by the requirement that physical quantities of the total
system are equivalent to the corresponding quantities of the charged rotating
source body. This requirement can be regarded as an equivalence principle in a
generalized sense.Comment: 35 page
Jarzynski equality for the Jepsen gas
We illustrate the Jarzynski equality on the exactly solvable model of a
one-dimensional ideal gas in uniform expansion or compression. The analytical
results for the probability density of the work performed by the gas
are compared with the results of molecular dynamics simulations for a
two-dimensional dilute gas of hard spheres.Comment: 7 pages, 4 figures, submitted to Europhys. Let
The Rolling Tachyon Boundary Conformal Field Theory on an Orbifold
We consider the non-trivial boundary conformal field theory with exactly
marginal boundary deformation. In recent years this deformation has been
studied in the context of rolling tachyons and S-branes in string theory. Here
we study the problem directly from an open string point of view, at one loop.
We formulate the theory of the Z_2 reflection orbifold. To do so, we extend
fermionization techniques originally introduced by Polchinski and Thorlacius.
We also explain how to perform the open string computations at arbitrary
(rational) radius, by consistently constructing the corresponding shift
orbifold, and show in what sense these are related to known boundary states. In
a companion paper, we use these results in a cosmological context involving
decaying branes.Comment: 23 page
Asymmetric Non-Abelian Orbifolds and Model Building
The rules for the free fermionic string model construction are extended to
include general non-abelian orbifold constructions that go beyond the real
fermionic approach. This generalization is also applied to the asymmetric
orbifold rules recently introduced. These non-abelian orbifold rules are quite
easy to use. Examples are given to illustrate their applications.Comment: 30 pages, Revtex 3.
The boundary states and correlation functions of the tricritical Ising model from the Coulomb-gas formalism
We consider the minimal conformal model describing the tricritical Ising
model on the disk and on the upper half plane. Using the coulomb-gas formalism
we determine its consistents boundary states as well as its 1-point and 2-point
correlation functions.Comment: 20 pages, no figure. Version 2:A paragraph for the calculation of the
2-point correlators was added. Some typos and garammatical errors were
corrected.Version 3: Equations 24 are modified. Version 4 : new introduction
and minor correction
New nonlinear dielectric materials: Linear electrorheological fluids under the influence of electrostriction
The usual approach to the development of new nonlinear dielectric materials
focuses on the search for materials in which the components possess an
inherently large nonlinear dielectric response. In contrast, based on
thermodynamics, we have presented a first-principles approach to obtain the
electrostriction-induced effective third-order nonlinear susceptibility for the
electrorheological (ER) fluids in which the components have inherent linear,
rather than nonlinear, responses. In detail, this kind of nonlinear
susceptibility is in general of about the same order of magnitude as the
compressibility of the linear ER fluid at constant pressure. Moreover, our
approach has been demonstrated in excellent agreement with a different
statistical method. Thus, such linear ER fluids can serve as a new nonlinear
dielectric material.Comment: 11 page
Preheating after N-flation
We study preheating in N-flation, assuming the Mar\v{c}enko-Pastur mass
distribution, equal energy initial conditions at the beginning of inflation and
equal axion-matter couplings, where matter is taken to be a single, massless
bosonic field. By numerical analysis we find that preheating via parametric
resonance is suppressed, indicating that the old theory of perturbative
preheating is applicable. While the tensor-to-scalar ratio, the non-Gaussianity
parameters and the scalar spectral index computed for N-flation are similar to
those in single field inflation (at least within an observationally viable
parameter region), our results suggest that the physics of preheating can
differ significantly from the single field case.Comment: 14 pages, 14 figures, references added, fixed typo
Free boson formulation of boundary states in W_3 minimal models and the critical Potts model
We develop a Coulomb gas formalism for boundary conformal field theory having
a symmetry and illustrate its operation using the three state Potts model.
We find that there are free-field representations for six conserving
boundary states, which yield the fixed and mixed physical boundary conditions,
and two violating boundary states which yield the free and new boundary
conditions. Other violating boundary states can be constructed but they
decouple from the rest of the theory. Thus we have a complete free-field
realization of the known boundary states of the three state Potts model. We
then use the formalism to calculate boundary correlation functions in various
cases. We find that the conformal blocks arising when the two point function of
is calculated in the presence of free and new boundary conditions
are indeed the last two solutions of the sixth order differential equation
generated by the singular vector.Comment: 25 page
Efficiency at maximum power of low dissipation Carnot engines
We study the efficiency at maximum power, , of engines performing
finite-time Carnot cycles between a hot and a cold reservoir at temperatures
and , respectively. For engines reaching Carnot efficiency
in the reversible limit (long cycle time, zero dissipation),
we find in the limit of low dissipation that is bounded from above by
and from below by . These bounds are reached when
the ratio of the dissipation during the cold and hot isothermal phases tend
respectively to zero or infinity. For symmetric dissipation (ratio one) the
Curzon-Ahlborn efficiency is recovered.Comment: 4 pages, 1 figure, 1 tabl
- …