1,958 research outputs found

    The Effect Of Microscopic Correlations On The Information Geometric Complexity Of Gaussian Statistical Models

    Full text link
    We present an analytical computation of the asymptotic temporal behavior of the information geometric complexity (IGC) of finite-dimensional Gaussian statistical manifolds in the presence of microcorrelations (correlations between microvariables). We observe a power law decay of the IGC at a rate determined by the correlation coefficient. It is found that microcorrelations lead to the emergence of an asymptotic information geometric compression of the statistical macrostates explored by the system at a faster rate than that observed in absence of microcorrelations. This finding uncovers an important connection between (micro)-correlations and (macro)-complexity in Gaussian statistical dynamical systems.Comment: 12 pages; article in press, Physica A (2010)

    Imaging Simulations of the Sunyaev-Zel'dovich Effect for ALMA

    Full text link
    We present imaging simulations of the Sunyaev-Zel'dovich effect of galaxy clusters for the Atacama Large Millimeter/submillimeter Array (ALMA) including the Atacama Compact Array (ACA). In its most compact configuration at 90GHz, ALMA will resolve the intracluster medium with an effective angular resolution of 5 arcsec. It will provide a unique probe of shock fronts and relativistic electrons produced during cluster mergers at high redshifts, that are hard to spatially resolve by current and near-future X-ray detectors. Quality of image reconstruction is poor with the 12m array alone but improved significantly by adding ACA; expected sensitivity of the 12m array based on the thermal noise is not valid for the Sunyaev-Zel'dovich effect mapping unless accompanied by an ACA observation of at least equal duration. The observations above 100 GHz will become excessively time-consuming owing to the narrower beam size and the higher system temperature. On the other hand, significant improvement of the observing efficiency is expected once Band 1 is implemented in the future.Comment: 16 pages, 12 figures. Accepted for publication in PASJ. Note added in proof is include

    The Sunyaev-Zel'dovich Effect at Five Arc-seconds: RXJ1347.5-1145 Imaged by ALMA

    Full text link
    We present the first image of the thermal Sunyaev-Zel'dovich effect (SZE) obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Combining 7-m and 12-m arrays in Band 3, we create an SZE map toward a galaxy cluster RXJ1347.5-1145 with 5 arc-second resolution (corresponding to the physical size of 20 kpc/h), the highest angular and physical spatial resolutions achieved to date for imaging the SZE, while retaining extended signals out to 40 arc-seconds. The 1-sigma statistical sensitivity of the image is 0.017 mJy/beam or 0.12 mK_CMB at the 5 arc-second full width at half maximum. The SZE image shows a good agreement with an electron pressure map reconstructed independently from the X-ray data and offers a new probe of the small-scale structure of the intracluster medium. Our results demonstrate that ALMA is a powerful instrument for imaging the SZE in compact galaxy clusters with unprecedented angular resolution and sensitivity. As the first report on the detection of the SZE by ALMA, we present detailed analysis procedures including corrections for the missing flux, to provide guiding methods for analyzing and interpreting future SZE images by ALMA.Comment: 20 pages, 13 figures. Accepted for publication in PAS

    Submm/mm Galaxy Counterpart Identification Using a Characteristic Density Distribution

    Full text link
    We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer IRAC colors as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and SMA-confirmed counterparts to AzTEC sources across three fields (GOODS-N, GOODS-S, and COSMOS), we develop a non-parametric IRAC color-color characteristic density distribution (CDD), which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around SMGs and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beamsize (~18"), this technique identifies ~85 per cent of SMG counterparts. For much larger beamsizes (>30"), we report identification rates of 33-49 per cent. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the LMT and SCUBA-2 on JCMT.Comment: 30 pages, 9 figures, 5 tables. Accepted for publication in MNRA
    corecore