112 research outputs found

    Bose-Einstein condensation of indirect excitons in coupled quantum wells

    Full text link
    We study the ground-state properties of a quasi-two-dimensional Bose-Einstein condensate of indirect excitons, which are confined in an anisotropic harmonic potential. Incorporating the interactions, we calculate the order parameter variationally. The difficulties in the detection of a Bose-Einstein condensate are also discussed, along with possible ways which would overcome them.Comment: 13 pages, RevTex, to appear in the Journal of Low Temp. Physic

    Vortex nucleation in rotating Bose-Einstein condensates

    Full text link
    We study the formation and stability of a single vortex state in a weakly-interacting Bose-Einstein condensate that is confined in a rotating harmonic potential. Our results are consistent with the fact that any single off-center vortex is unstable. Furthermore, a vortex state located at the center of the cloud first becomes locally stable as the rotational frequency increases. Finally our study implies the existence of hysteresis effects.Comment: 4 pages, 6 ps figures, RevTe

    Vortices in Bose-Einstein condensates with anharmonic confinement

    Full text link
    We examine an effectively repulsive Bose-Einstein condensate of atoms, that rotates in a quadratic-plus-quartic trapping potential. We investigate the phase diagram of the system as a function of the angular frequency of rotation and of the coupling constant, demonstrating that there are phase transitions between multiply- and singly-quantized vortex states. The derived phase diagram is shown to be universal and exact in the limits of small anharmonicity and weak coupling constant.Comment: 4 pages, 2 ps figures, RevTe

    Construction of a giant vortex state in a trapped Fermi system

    Full text link
    A superfluid atomic Fermi system may support a giant vortex if the trapping potential is anharmonic. In such a potential, the single-particle spectrum has a positive curvature as a function of angular momentum. A tractable model is put up in which the lowest and next lowest Landau levels are occupied. Different parameter regimes are identified and characterized. Due to the dependence of the interaction on angular momentum quantum number, the Cooper pairing is at its strongest not only close to the Fermi level, but also close to the energy minimum. It is shown that the gas is superfluid in the interior of the toroidal density distribution and normal in the outer regions. Furthermore, the pairing may give rise to a localized density depression in configuration space.Comment: 12 pages, 14 figure file

    Propagation of exciton pulses in semiconductors

    Full text link
    Using a toy model, we examine the propagation of excitons in Cu2_2O, which form localized pulses under certain experimental conditions. The formation of these waves is attributed to the effect of dispersion, non-linearity and the coupling of the excitons to phonons, which acts as a dissipative mechanism.Comment: 5 pages, 4 ps figures, RevTe

    Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases

    Full text link
    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consists of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.Comment: 4 pages, 1 figure; revised version explains exact solutions in terms of isospin symmetry and Hund's rul

    Exact diagonalization results for an anharmonically trapped Bose-Einstein condensate

    Full text link
    We consider bosonic atoms that rotate in an anharmonic trapping potential. Using numerical diagonalization of the Hamiltonian, we identify the various phases of the gas as the rotational frequency of the trap and the coupling between the atoms are varied.Comment: 7 pages, RevTex, 10 figure

    Comment on ``Fragmented Condensate Ground State of Trapped Weakly Interacting Bosons in Two Dimensions"

    Full text link
    Recently Liu et al. [PRL 87, 030404 (2001)] examined the lowest state of a weakly-interacting Bose-Einstein condensate. In addition to other interesting results, using the method of the pair correlation function, they questioned the validity of the mean-field picture of the formation of vortices and stated that the vortices are generated at the center of the cloud. This is in apparent contradiction to the Gross-Pitaevskii approach, which predicts that the vortices successively enter the cloud from its outer parts as L/N (where N is the number of atoms in the trap and hbar(L) is the angular momentum of the system) increases. We have managed to reproduce the results of Liu et al. however a more careful analysis presented below confirms the validity of the mean-field approach.Comment: 1 page, RevTex, 2 figure
    • …
    corecore