4 research outputs found

    Uracil-DNA glycosylase UNG1 isoform variant supports class switch recombination and repairs nuclear genomic uracil

    No full text
    UNG is the major uracil-DNA glycosylase in mammalian cells and is involved in both error-free base excision repair of genomic uracil and mutagenic uracil-processing at the antibody genes. However, the regulation of UNG in these different processes is currently not well understood. The UNG gene encodes two isoforms, UNG1 and UNG2, each possessing unique N-termini that mediate translocation to the mitochondria and the nucleus, respectively. A strict subcellular localization of each isoform has been widely accepted despite a lack of models to study them individually. To determine the roles of each isoform, we generated and characterized several UNG isoform-specific mouse and human cell lines. We identified a distinct UNG1 isoform variant that is targeted to the cell nucleus where it supports antibody class switching and repairs genomic uracil. We propose that the nuclear UNG1 variant, which in contrast to UNG2 lacks a PCNA-binding motif, may be specialized to act on ssDNA through its ability to bind RPA. RPA-coated ssDNA regions include both transcribed antibody genes that are targets for deamination by AID and regions in front of the moving replication forks. Our findings provide new insights into the function of UNG isoforms in adaptive immunity and DNA repair

    RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork

    No full text
    Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci

    AID expression in B-cell lymphomas causes accumulation of genomic uracil and a distinct AID mutational signature

    Get PDF
    tThe most common mutations in cancer are C to T transitions, but their origin has remained elusive.Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many com-mon cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism.Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows sig-nificantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancercell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AIDmRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdownsignificantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergoclass switch recombination displayed a several-fold increase in total genomic uracil, indicating that Bcells may undergo widespread cytosine deamination after stimulation. In line with this, we found thatclustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carryAID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil withuracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion,AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutationsin B-cell malignancies

    Robust DNA repair in PAXX-deficient mammalian cells

    No full text
    To ensure genome stability, mammalian cells employ several DNA repair pathways. Nonhomologous DNA end joining (NHEJ) is the DNA repair process that fixes double-strand breaks throughout the cell cycle. NHEJ is involved in the development of B and T lymphocytes through its function in V(D)J recombination and class switch recombination (CSR). NHEJ consists of several core and accessory factors, including Ku70, Ku80, XRCC4, DNA ligase 4, DNA-PKcs, Artemis, and XLF. Paralog of XRCC4 and XLF (PAXX) is the recently described accessory NHEJ factor that structurally resembles XRCC4 and XLF and interacts with Ku70/Ku80. To determine the physiological role of PAXX in mammalian cells, we purchased and characterized a set of custom-generated and commercially available NHEJ-deficient human haploid HAP1 cells, PAXXΔ, XRCC4Δ, and XLFΔ. In our studies, HAP1 PAXXΔ cells demonstrated modest sensitivity to DNA damage, which was comparable to wild-type controls. By contrast, XRCC4Δ and XLFΔ HAP1 cells possessed significant DNA repair defects measured as sensitivity to double-strand break inducing agents and chromosomal breaks. To investigate the role of PAXX in CSR, we generated and characterized Paxx−/− and Aid−/− murine lymphoid CH12F3 cells. CSR to IgA was nearly at wild-type levels in the Paxx−/− cells and completely ablated in the absence of activation-induced cytidine deaminase (AID). In addition, Paxx−/− CH12F3 cells were hypersensitive to zeocin when compared to wild-type controls. We concluded that Paxx-deficient mammalian cells maintain robust NHEJ and CSR
    corecore