2 research outputs found

    Measurement of the spin structure of the deuteron in the DIS region

    No full text
    Ageev ES, Alexakhin VY, Alexandrov Y, et al. Measurement of the spin structure of the deuteron in the DIS region. Phys.Lett. B. 2005;612(3-4):154-164.We present a new measurement of the longitudinal spin asymmetry Ad and the spin-dependent structure function g(1)(d) of the deuteron in the range 1 < Q(2) < 100 GeV2 and 0.004 < x < 0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised (LiD)-Li-6 target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03. (c) 2005 Elsevier B.V. All rights reserved

    A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    No full text
    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W+, W-, and Z 0 bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 x 106. The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle
    corecore