31 research outputs found

    Lower cerebrospinal fluid/plasma fibroblast growth factor 21 (FGF21) ratios and placental FGF21 production in gestational diabetes

    Get PDF
    Objectives: Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants. Design: CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26–47 years, BMI: 24.3–36.3 kg/m2) and 12 controls (age: 22–40 years, BMI: 30.1–37.0 kg/m2)]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA. Results: Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2–352.7) vs. 115.5 (60.5–188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3–0.6) vs. 0.8 (0.5–1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05). Conclusions: The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points

    Not Available

    No full text
    Not AvailableBluetongue (BT) is a Culicoides-borne disease caused by several serotypes of bluetongue virus (BTV). Similar to other insect-borne viral diseases, distribution of BT is limited to distribution of Culicoides species competent to transmit BTV. In the tropics, vector activity is almost year long, and hence, the disease is endemic, with the circulation of several serotypes of BTV, whereas in temperate areas, seasonal incursions of a limited number of serotypes of BTV from neighbouring tropical areas are observed. Although BTV is endemic in all the three major tropical regions (parts of Africa, America and Asia) of the world, the distribution of serotypes is not alike. Apart from serological diversity, geography-based diversity of BTV genome has been observed, and this is the basis for proposal of topotypes. However, evolution of these topotypes is not well understood. In this study, we report the isolation and characterization of several BTV-4 isolates from India. These isolates are distinct from BTV-4 isolates from other geographical regions. Analysis of available BTV seg-2 sequences indicated that the Australasian BTV-4 diverged from African viruses around 3,500 years ago, whereas the American viruses diverged relatively recently (1,684 CE). Unlike Australasia and America, BTV-4 strains of the Mediterranean area evolved through several independent incursions. We speculate that independent evolution of BTV in different geographical areas over long periods of time might have led to the diversity observed in the current virus population.Not Availabl

    Development of tri-component antibacterial hybrid fibres for potential use in wound care.

    No full text
    Tri-component antibacterial psyllium-alginate-chitosan fibres were developed and their properties were studied with reference to their application in health-care. Psyllium was co-extruded with sodium alginate as a carrier into a coagulation bath containing calcium chloride and hydrolysed chitosan. Different concentrations of the hydrolysed chitosan were used and an in vitro assessment of antibacterial activity of the produced fibres was carried out against the known pathogens of Staphylococcus aureus and Escherichia coli. The effect of hydrolysed chitosan bath composition on physical and mechanical properties of produced fibres was also examined. Chitosan-containing fibres demonstrated a 70-130% thicker dry diameter than the control fibre (F1). The linear density of the fibre increased from 6.8 to 10 tex as the chitosan concentration increased from 10g/l to 30g/l (fibre type F1 to F4). With the addition of hydrolysed chitosan, distilled water absorption was increased while the saline and solution-A (0.83% w/v NaCl and 0.03% w/v CaCl ) absorption decreased. The percentage strain of hybrid fibres was lower than the control fibre due to the inclusion of hydrolysed chitosan. At lower viscosities of the hydrolysed chitosan bath, the fibres were much stiffer due to better penetration of the hydrolysed chitosan. Similarly, at lower viscosities, the tenacities of the hybrid fibres were higher than the control fibre. The hydrolysed chitosan-treated fibres were more effective against Staphylococcus aureus than the Escherichia coli, and the antibacterial activity increased with the decrease in viscosity of the hydrolysed chitosan bath. We developed novel PAC fibres. Antibacterial testing showed that hydrolysed chitosan was more effective against Gram-positive bacteria than Gram-negative bacteria
    corecore