25 research outputs found

    Statistical analysis of trigonometric parallaxes

    Get PDF
    The present project was initiated with two specific medium-term goals: first, to develop a novel approach, based on global modeling and maximum likelihood, to the study of databases of stellar data, with specific attention to the results to be obtained by the Hipparcos mission; and second, to apply and test the methodology developed to existing ground-based data. The long-term goal was of course to integrate the methodology and the ground-based data into a global study of the results of the Hipparcos mission, which were expected to be made available in 1995 or 1996. The closing of the project is due to the recent change of home institution of the PI, who has moved from the University of Illinois to Johns Hopkins University. As a consequence of this move, the three scientists involved in this project will be in close proximity, thereby hopefully improving their ability to collaborate and increasing the productivity of the project. Continued funding for the project has been requested from Johns Hopkins University. This report describes briefly the results obtained so far both on the technical aspect of software development and on the scientific side of applications to existing ground-based data. Significant progress has been made on both counts, with several papers published in (or submitted to) refereed journals and in conference proceedings. Because it is hoped that the project can be successfully continued with NASA support, the report of the progress in each area includes also an assessment of how the current results fit in the expected continuation of the project. Our results to date include: code development (essentially completed); a detailed study of the kinematics and dynamics of stars escaping from the Hyades cluster, relevant to the question of membership in the Hyades; a study of the kinematics and luminosity calibration of nearby dwarfs; an assessment of the quality of the photometry included in the Hipparcos Input Catalog; and two studies of properties of nearby clusters, including a moving-cluster determination of the distance to Praesepe. The bibliography includes three papers submitted to refereed journals, two of which have already been published, and four contributions to conference proceedings. Finally, the work so far has also provided a very good introduction to stellar dynamics and astrometry for an undergraduate student, with educational benefits that had not been foreseen in the original proposal

    Cosmic Gravitational Shear from the HST Medium Deep Survey

    Full text link
    We present a measurement of cosmic shear on scales ranging from 10\arcsec to 2\arcmin in 347 WFPC2 images of random fields. Our result is based on shapes measured via image fitting and on a simple statistical technique; careful calibration of each step allows us to quantify our systematic uncertainties and to measure the cosmic shear down to very small angular scales. The WFPC2 images provide a robust measurement of the cosmic shear signal decreasing from 5.25.2% at 10\arcsec to 2.22.2% at 130\arcsec .Comment: 4 pages 2 Postscript figures, uses emulateapj.cls Astrophysical Journal Letters, December 1, 200

    New "Einstein Cross" Gravitational Lens Candidates in HST WFPC2 Survey Images

    Get PDF
    We report the serendipitous discovery of ``Einstein cross'' gravitational lens candidates using the Hubble Space Telescope. We have so far discovered two good examples of such lenses, each in the form of four faint blue images located in a symmetric configuration around a red elliptical galaxy. The high resolution of HST has facilitated the discovery of this optically selected sample of faint lenses with small (~1 arcsec) separations between the (I ~ 25-27) lensed components and the much brighter (I ~ 19-22) lensing galaxies. The sample has been discovered in the routine processing of HST fields through the Medium Deep Survey pipeline, which fits simple galaxy models to broad band filter images of all objects detected in random survey fields using WFPC2. We show that the lens configuration can be modeled using the gravitational field potential of a singular isothermal ellipsoidal mass distribution. With this model the lensing potential is very similar, both in ellipticity and orientation, to the observed light distribution of the elliptical galaxy, as would occur when stars are a tracer population. The model parameters and associated errors have been derived by 2-dimensional analysis of the observed images. The maximum likelihood procedure iteratively converges simultaneously on the model for the lensing elliptical galaxy and the source of the lensed components. A systematic search is in progress for other gravitational lens candidates in the HST Medium Deep Survey. This should eventually lead to a good statistical estimate for lensing probabilities, and enable us to probe the cosmological component of the observed faint blue galaxy population.Comment: Accepted for Astrophysical Journal Letters, 1995 November 1 LaTex, 10 pages, includes 2 figures 1 table, tarred gzip uuencoded using uufiles scrip

    The Morphologically Divided Redshift Distribution of Faint Galaxies

    Get PDF
    We have constructed a morphologically divided redshift distribution of faint field galaxies using a statistically unbiased sample of 196 galaxies brighter than I = 21.5 for which detailed morphological information (from the Hubble Space Telescope) as well as ground-based spectroscopic redshifts are available. Galaxies are classified into 3 rough morphological types according to their visual appearance (E/S0s, Spirals, Sdm/dE/Irr/Pec's), and redshift distributions are constructed for each type. The most striking feature is the abundance of low to moderate redshift Sdm/dE/Irr/Pec's at I < 19.5. This confirms that the faint end slope of the luminosity function (LF) is steep (alpha < -1.4) for these objects. We also find that Sdm/dE/Irr/Pec's are fairly abundant at moderate redshifts, and this can be explained by strong luminosity evolution. However, the normalization factor (or the number density) of the LF of Sdm/dE/Irr/Pec's is not much higher than that of the local LF of Sdm/dE/Irr/Pec's. Furthermore, as we go to fainter magnitudes, the abundance of moderate to high redshift Irr/Pec's increases considerably. This cannot be explained by strong luminosity evolution of the dwarf galaxy populations alone: these Irr/Pec's are probably the progenitors of present day ellipticals and spiral galaxies which are undergoing rapid star formation or merging with their neighbors. On the other hand, the redshift distributions of E/S0s and spirals are fairly consistent those expected from passive luminosity evolution, and are only in slight disagreement with the non-evolving model.Comment: 11 pages, 4 figures (published in ApJ

    Luminosity Functions of Elliptical Galaxies at z < 1.2

    Get PDF
    The luminosity functions of E/S0 galaxies are constructed in 3 different redshift bins (0.2 < z < 0.55, 0.55 < z < 0.8, 0.8 < z < 1.2), using the data from the Hubble Space Telescope Medium Deep Survey (HST MDS) and other HST surveys. These independent luminosity functions show the brightening in the luminosity of E/S0s by about 0.5~1.0 magnitude at z~1, and no sign of significant number evolution. This is the first direct measurement of the luminosity evolution of E/S0 galaxies, and our results support the hypothesis of a high redshift of formation (z > 1) for elliptical galaxies, together with weak evolution of the major merger rate at z < 1.Comment: To be published in ApJ Letters, 4 pages, AAS Latex, 4 figures, and 2 table

    Investigation of Gravitational Lens Mass Models

    Get PDF
    We have previously reported the discovery of strong gravitational lensing by faint elliptical galaxies using the WFPC2 on HST and here we investigate their potential usefulness in putting constraints on lens mass models. We compare various ellipsoidal surface mass distributions, including those with and without a core radius, as well as models in which the mass distributions are assumed to have the same axis ratio and orientation as the galaxy light. We also study models which use a spherical mass distribution having various profiles, both empirical and following those predicted by CDM simulations. These models also include a gravitational shear term. The model parameters and associated errors have been derived by 2-dimensional analysis of the observed HST WFPC2 images. The maximum likelihood procedure iteratively converges simultaneously on the model for the lensing elliptical galaxy and the lensed image components. The motivation for this study was to distinguish between these mass models with this technique. However, we find that, despite using the full image data rather than just locations and integrated magnitudes, the lenses are fit equally well with several of the mass models. Each of the mass models generates a similar configuration but with a different magnification and cross-sectional area within the caustic, and both of these latter quantities govern the discovery probability of lensing in the survey. These differences contribute to considerable cosmic scatter in any estimate of the cosmological constant using gravitational lenses.Comment: 10 pages with 6 embedded figures, tentatively scheduled to be published in the July 2001 issue of The Astronomical Journal. For additional information see http://mds.phys.cmu.edu/lense

    The Top Ten List of Gravitational Lens Candidates from the HST Medium Deep Survey

    Get PDF
    A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the HST Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e. they are faint systems with sub-arcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates which appear to have multiple images of the source. Three are cases where the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported in Ratnatunga et al 1995 (ApJL, 453, L5) We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area which was searched for these candidate lens objects.Comment: 26 pages including 12 figures and 10 tables. AJ Vol. 117, No.

    Quantitative Morphology of Moderate Redshift Galaxies : How Many Peculiars are There ?

    Full text link
    The advent of the Hubble Space Telescope (HST) has provided images of galaxies at moderate and high redshifts and changed the scope of galaxy morphologies considerably. It is evident that the Hubble Sequence requires modifications in order to incorporate all the various morphologies one encounters at such redshifts. We investigate and compare different approaches to quantifying peculiar galaxy morphologies on images obtained from the Medium Deep Survey (MDS) and other surveys using the Wide Field Planetary Camera 2 (WFPC2) on board the HST, in the I band (filter F814W). We define criteria for peculiarity and put them to use on a sample of 978 galaxies, classifying them by eye as either normal or peculiar. Based on our criteria and on concepts borrowed from digital image processing we design a set of four purely morphological parameters, which comprise the overall texture (or ``blobbiness'') of the image; the distortion of isophotes; the filling-factor of isophotes; and the skeleta of detected structures. We also examine the parameters suggested by Abraham et al. (1995). An artificial neural network (ANN) is trained to distinguish between normal and peculiar galaxies. While the majority of peculiar galaxies are disk-dominated, we also find evidence for a significant population of bulge-dominated peculiars. Consequently, peculiar galaxies do not all form a ``natural'' continuation of the Hubble sequence beyond the late spirals and the irregulars. The trained neural network is applied to a second, larger sample of 1999 WFPC2 images and its probabilistic capabilities are used to estimate the frequency of peculiar galaxies at moderate redshifts as 35±1535 \pm 15 %.Comment: 32 pages, latex and 9 figures, Ap. J., accepte

    The morphological mix of field galaxies to I=24.25 magnitudes (b=26 magnitudes) from a deep Hubble Space Telescope WFPC2 image

    Full text link
    We determine the morphological mix of field galaxies down to mI≃24.25m_{I}\simeq 24.25 mag (mB∼26.0m_{B}\sim 26.0 mag) from a single ultradeep HST WFPC2 image in both the V606V_{606} and I814I_{814} filters. In total, we find 227 objects with mI≤24.5m_{I}\le 24.5 mag and classify these into three types: ellipticals (16%), early-type spirals (37%) and late-type spirals/Irregulars (47%). The differential number counts for each type are compared to simple models in a standard flat cosmology. We find that both the elliptical and early-type spiral number counts are well described by {\it little or no}-evolution models, but only when normalized at bJ=18.0b_{J} = 18.0 mag. Given the uncertainties in the luminosity function (LF) normalization, both populations are consistent with a mild evolutionary scenario based on a normal/low rate of star-formation. This constrains the end of the last {\it major} star-formation epoch in the giant galaxy populations to z≥0.8z\geq 0.8. Conversely, the density of the observed late-type/Irregular population is found to be a factor of 10 in excess of the conventional no-evolution model. This large population might be explained by either a modified {\it local} dwarf-rich LF, and/or strong evolution acting on the {\it local} LF. For the dwarf-rich case, a {\it steep} faint-end Schechter-slope (α≃−1.8\alpha\simeq -1.8) is required plus a five-fold increase in the dwarf normalization. For a purely evolving model based on a {\it flat} Loveday {\it et al.} (1992) LF (α≃−1.0\alpha\simeq -1.0), a ubiquitous starburst of ΔI∼\Delta I\sim2.0 mag is needed at z≃0.5\simeq 0.5 for the {\it entire} late-type population. We argue for a combination of these possibilities, and show that for a steep Marzke {\it et al.} (1994) LF (α≃−1.5\alpha\simeq -1.5), a starburst of ∼\sim 1.3 mag is requiredComment: 9 pages, 3 figures (2 colour). The figures are available at http://www.phys.unsw.edu.au/~spd/bib.htm
    corecore