3 research outputs found

    Prevalence and characterization of piperaquine, mefloquine and artemisinin derivatives triple-resistant Plasmodium falciparum in Cambodia

    No full text
    International audienceBackground In early 2016, in Preah Vihear, Northern Cambodia, artesunate/mefloquine was used to cope with dihydroartemisinin/piperaquine-resistant Plasmodium falciparum parasites. Following this policy, P. falciparum strains harbouring molecular markers associated with artemisinin, piperaquine and mefloquine resistance have emerged. However, the lack of a viable alternative led Cambodia to adopt artesunate/mefloquine countrywide, raising concerns about a surge of triple-resistant P. falciparum strains. Objectives To assess the prevalence of triple-resistant parasites after artesunate/mefloquine implementation countrywide in Cambodia and to characterize their phenotype. Methods For this multicentric study, 846 samples were collected from 2016 to 2019. Genotyping of molecular markers associated with artemisinin, piperaquine and mefloquine resistance was coupled with phenotypic analyses. Results Only four triple-resistant P. falciparum isolates (0.47%) were identified during the study period. These parasites combined the pfk13 polymorphism with pfmdr1 amplification, pfpm2 amplification and/or pfcrt mutations. They showed significantly higher tolerance to artemisinin, piperaquine and mefloquine and also to the mefloquine and piperaquine combination. Conclusions The use of artesunate/mefloquine countrywide in Cambodia has not led to a massive increase of triple-resistant P. falciparum parasites. However, these parasites circulate in the population, and exhibit clear resistance to piperaquine, mefloquine and their combination in vitro. This study demonstrates that P. falciparum can adapt to more complex drug associations, which should be considered in future therapeutic designs

    Clinical and In Vitro Resistance of Plasmodium falciparum to Artesunate-Amodiaquine in Cambodia

    No full text
    International audienceBackground Artesunate-amodiaquine is a potential therapy for uncomplicated malaria in Cambodia. Methods Between September 2016 and January 2017, artesunate-amodiaquine efficacy and safety were evaluated in a prospective, open-label, single-arm observational study at health centers in Mondulkiri, Pursat, and Siem Reap Provinces, Cambodia. Adults and children with microscopically confirmed Plasmodium falciparum malaria received oral artesunate-amodiaquine once daily for 3 days plus single-dose primaquine, with follow-up on days 7, 14, 21, and 28. The primary outcome was day-28 polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR). An amodiaquine parasite survival assay (AQSA) was developed and applied to whole genome sequencing results to evaluate potential amodiaquine resistance molecular markers. Results In 63 patients, day-28 PCR-adjusted ACPR was 81.0% (95% confidence interval [CI], 68.9–88.7). Day 3 parasite positivity rate was 44.4% (28/63; 95% CI, 31.9–57.5). All 63 isolates had the K13(C580Y) marker for artemisinin resistance; 79.4% (50/63) had Pfpm2 amplification. The AQSA resistance phenotype (≥45% parasite survival) was expressed in 36.5% (23/63) of isolates and was significantly associated with treatment failure (P = .0020). Pfmdr1 mutant haplotypes were N86/184F/D1246, and Pfcrt was CVIET or CVIDT at positions 72–76. Additional Pfcrt mutations were not associated with amodiaquine resistance, but the G353V mutant allele was associated with ACPR compared to Pfmdr1 haplotypes harboring F1068L or S784L/R945P mutations (P = .030 and P = .0004, respectively). Conclusions For uncomplicated falciparum malaria in Cambodia, artesunate-amodiaquine had inadequate efficacy owing to amodiaquine-resistant P. falciparum. Amodiaquine resistance was not associated with previously identified molecular markers

    In vitro activity of ferroquine against artemisinin-based combination therapy (ACT)-resistant Plasmodium falciparum isolates from Cambodia

    No full text
    International audienceBackgroundCambodia is the epicentre of resistance emergence for virtually all antimalarial drugs. Selection and spread of parasites resistant to artemisinin-based combination therapy (ACT) is a major threat for malaria elimination, hence the need to renew the pool of effective treatments.ObjectivesTo determine whether ACT resistance haplotypes could have an effect on ferroquine in vitro antimalarial activity.MethodsIn vitro susceptibility to ferroquine was measured for 80 isolates from Cambodia characterized for their molecular resistance profile to artemisinin, piperaquine and mefloquine.ResultsAmong the 80 isolates tested, the overall median (IQR) IC50 of ferroquine was 10.9 nM (8.7–18.3). The ferroquine median (IQR) IC50 was 8.9 nM (8.1–11.8) for Pfk13 WT parasites and was 12.9 nM (9.5–20.0) for Pfk13 C580Y parasites with no amplification of Pfpm2 and Pfmdr1 genes. The median (IQR) IC50 of ferroquine for Pfk13 C580Y parasites with amplification of the Pfpm2 gene was 17.2 nM (14.5–20.5) versus 9.1 nM (7.9–10.7) for Pfk13 C580Y parasites with amplification of the Pfmdr1 gene.ConclusionsFerroquine exerts promising efficacy against ACT-resistant isolates. Whereas Pfpm2 amplification was associated with the highest parasite tolerance to ferroquine, the susceptibility range observed was in accordance with those measured in ACT resistance-free areas. This enables consideration of ferroquine as a relevant therapeutic option against ACT-resistant malaria
    corecore