6 research outputs found

    Conflicting results of prenatal FISH with different probes for Down's Syndrome critical regions associated with mosaicism for a de novo del(21)(q22) characterised by molecular karyotyping: Case report

    Get PDF
    For the rapid detection of common aneuploidies either PCR or Fluorescence in situ hybridisation (FISH) on uncultured amniotic fluid cells are widely used. There are different commercial suppliers providing FISH assays for the detection of trisomies affecting the Down's syndrome critical regions (DSCR) in 21q22. We present a case in which rapid FISH screening with different commercial probes for the DSCR yielded conflicting results. Chromosome analysis revealed a deletion of one chromosome 21 in q22 which explained the findings. Prenatally an additional small supernumerary marker chromosome (sSMC) was discovered as well, which could not be characterised. Postnatal chromosome analysis in lymphocytes of the infant revealed complex mosaicism with four cell lines. By arrayCGH the sSMC was provisionally described as derivative chromosome 21 which was confirmed by targeted FISH experiments

    DNA-Methylation Profiling of Fetal Tissues Reveals Marked Epigenetic Differences between Chorionic and Amniotic Samples

    Get PDF
    Epigenetic mechanisms including DNA methylation are supposed to play a key role in fetal development. Here we have investigated fetal DNA-methylation levels of 27,578 CpG loci in 47 chorionic villi (CVS) and 16 amniotic cell (AC) samples. Methylation levels differed significantly between karyotypically normal AC and CVS for 2,014 genes. AC showed more extreme DNA-methylation levels of these genes than CVS and the differentially methylated genes are significantly enriched for processes characteristic for the different cell types sampled. Furthermore, we identified 404 genes differentially methylated in CVS with trisomy 21. These genes were significantly enriched for high CG dinucleotid (CpG) content and developmental processes associated with Down syndrome. Our study points to major tissue-specific differences of fetal DNA-methylation and gives rise to the hypothesis that part of the Down syndrome phenotype is epigenetically programmed in the first trimester of pregnancy
    corecore