4,601 research outputs found

    Superfluid and Fermi liquid phases of Bose-Fermi mixtures in optical lattices

    Full text link
    We describe interacting mixtures of ultracold bosonic and fermionic atoms in harmonically confined optical lattices. For a suitable choice of parameters we study the emergence of superfluid and Fermi liquid (non-insulating) regions out of Bose-Mott and Fermi-band insulators, due to finite Boson and Fermion hopping. We obtain the shell structure for the system and show that angular momentum can be transferred to the non-insulating regions from Laguerre-Gaussian beams, which combined with Bragg spectroscopy can reveal all superfluid and Fermi liquid shells.Comment: 4 pages, 2 figure

    Nanoscale Structure and Elasticity of Pillared DNA Nanotubes

    Full text link
    We present an atomistic model of pillared DNA nanotubes (DNTs) and their elastic properties which will facilitate further studies of these nanotubes in several important nanotechnological and biological applications. In particular, we introduce a computational design to create an atomistic model of a 6-helix DNT (6HB) along with its two variants, 6HB flanked symmetrically by two double helical DNA pillars (6HB+2) and 6HB flanked symmetrically by three double helical DNA pillars (6HB+3). Analysis of 200 ns all-atom simulation trajectories in the presence of explicit water and ions shows that these structures are stable and well behaved in all three geometries. Hydrogen bonding is well maintained for all variants of 6HB DNTs. We calculate the persistence length of these nanotubes from their equilibrium bend angle distributions. The values of persistence length are ~10 {\mu}m, which is 2 orders of magnitude larger than that of dsDNA. We also find a gradual increase of persistence length with an increasing number of pillars, in quantitative agreement with previous experimental findings. To have a quantitative understanding of the stretch modulus of these tubes we carried out nonequilibrium Steered Molecular Dynamics (SMD). The linear part of the force extension plot gives stretch modulus in the range of 6500 pN for 6HB without pillars which increases to 11,000 pN for tubes with three pillars. The values of the stretch modulus calculated from contour length distributions obtained from equilibrium MD simulations are similar to those obtained from nonequilibrium SMD simulations. The addition of pillars makes these DNTs very rigid.Comment: Published in ACS Nan

    Influence of Magnetic Field of Solar Plasma on Galactic Cosmic Rays

    Get PDF

    Magnonic spin-transfer torque MRAM with low power, high speed, and error-free switching

    Full text link
    A new class of spin-transfer torque magnetic random access memory (STT-MRAM) is discussed, in which writing is achieved using thermally initiated magnonic current pulses as an alternative to conventional electric current pulses. The magnonic pulses are used to destabilize the magnetic free layer from its initial direction, and are followed immediately by a bipolar electric current exerting conventional spin-transfer torque on the free layer. The combination of thermal and electric currents greatly reduces switching errors, and simultaneously reduces the electric switching current density by more than an order of magnitude as compared to conventional STT-MRAM. The energy efficiency of several possible electro-thermal circuit designs have been analyzed numerically. As compared to STT-MRAM with perpendicular magnetic anisotropy, magnonic STT-MRAM reduces the overall switching energy by almost 80%. Furthermore, the lower electric current density allows the use of thicker tunnel barriers, which should result in higher tunneling magneto-resistance and improved tunnel barrier reliability. The combination of lower power, improved reliability, higher integration density, and larger read margin make magnonic STT-MRAM a promising choice for future non-volatile storage.Comment: 9 Pages, 11 Figure

    Superfluid and Mott Insulating shells of bosons in harmonically confined optical lattices

    Full text link
    Weakly interacting atomic or molecular bosons in quantum degenerate regime and trapped in harmonically confined optical lattices, exhibit a wedding cake structure consisting of insulating (Mott) shells. It is shown that superfluid regions emerge between Mott shells as a result of fluctuations due to finite hopping. It is found that the order parameter equation in the superfluid regions is not of the Gross-Pitaeviskii type except near the insulator to superfluid boundaries. The excitation spectra in the Mott and superfluid regions are obtained, and it is shown that the superfluid shells posses low energy sound modes with spatially dependent sound velocity described by a local index of refraction directly related to the local superfluid density. Lastly, the Berezinskii-Kosterlitz-Thouless transition and vortex-antivortex pairs are discussed in thin (wide) superfluid shells (rings) limited by three (two) dimensional Mott regions.Comment: 11 pages, 9 figures
    corecore