47 research outputs found

    Sustainable Perspective of Electric Vehicles and Its Future Prospects

    Get PDF
    Vehicles running on fossil fuel are creating a threat to the environment by emitting pollutants such as carbon monoxide, carbon dioxide and sulfur and nitrogen oxides into the environment. Electric vehicles and hybrid electric vehicles provide a perennial solution to this problem and since the utilization of renewables for charging, the market is on verge of electric vehicle revolution. Electric propulsion systems can also be used in heavy transport vehicles, thus transitioning them to electric. This paper puts forth an overview of the electric vehicles for transportation of masses and freight across the globe and emphasis on the battery charging infrastructures. Recent trends and advancements in electric vehicle batteries are discussed briefly, along with sustainability in Li-ion batteries and its materials; moreover, a comparative study of different electric vehicles available in the Indian market is done. Similarly, the incentives offered by government, challenges faced by these vehicles and future development areas are conversed at the end of the paper

    Widespread occurrence of lysine methylation in Plasmodium falciparum proteins at asexual blood stages

    Get PDF
    Post-transcriptional and post-translational modifications play a major role in Plasmodium life cycle regulation. Lysine methylation of histone proteins is well documented in several organisms, however in recent years lysine methylation of proteins outside histone code is emerging out as an important post-translational modification (PTM). In the present study we have performed global analysis of lysine methylation of proteins in asexual blood stages of Plasmodium falciparum development. We immunoprecipitated stage specific Plasmodium lysates using anti-methyl lysine specific antibodies that immunostained the asexual blood stage parasites. Using liquid chromatography and tandem mass spectrometry analysis, 570 lysine methylated proteins at three different blood stages were identified. Analysis of the peptide sequences identified 605 methylated sites within 422 proteins. Functional classification of the methylated proteins revealed that the proteins are mainly involved in nucleotide metabolic processes, chromatin organization, transport, homeostatic processes and protein folding. The motif analysis of the methylated lysine peptides reveals novel motifs. Many of the identified lysine methylated proteins are also interacting partners/substrates of PfSET domain proteins as revealed by STRING database analysis. Our findings suggest that the protein methylation at lysine residues is widespread in Plasmodium and plays an important regulatory role in diverse set of the parasite pathways

    SYNTHESIS, COMPUTER AIDED SCREENING AND PHARMACOLOGICAL EVALUATION OF 2/3-SUBSTITUTED-6(4-METHYLPHENYL)-4,5-DIHYDROPYRIDAZIN3(2H)-ONES, AND PYRIDAZINE SUBSTITUTED TRIAZINE

    Get PDF
    The present research work involved synthesis of some novel pyridazine derivatives and evaluation of their analgesic and anti-inflammatory activities in experimental animals to obtain safer non-steroidal anti-inflammatory drugs (NSAIDs). Friedal craft acylation reaction of succinic anhydride with toluene in the presence of anhydrous aluminum chloride gave 4-(4-methylphenyl)-4-oxo-butanoic acid (1). The aryl propionic acid 1 on reaction with phenyl hydrazine and hydrazine hydrate yielded the pyridazinone derivative 2 and 3, respectively. Reaction of the compound 3 with phosphorus oxychloride (POCl3) produced the corresponding chloropyridazine derivative 4. A 4-hydroxymethyl derivative of dihydropyridazinone (5) was synthesized by condensing 3 with methanol and formaldehyde (HCHO). The compound 5 on further treatment with guanidine hydrochloride in ethanol gave the pyridazino-triazine (6). The synthesized compounds were investigated for their analgesic activity in mice and anti-inflammatory activity in Wistar albino rats. The molecular, pharmacokinetic and toxicity properties of the synthesized compounds were calculated by Molinspiration and Osiris property explorer software. The results of in-vivo anti-inflammatory studies revealed that the compound. 4 showed maximum inhibition in paw edema volume followed by compound no. 3 while the compound no. 4 exhibited excellent  peripheral analgesic activity (74%) followed by the compound no. 5. Compound no. 4 and 5 also showed good central analgesic effect increased the reaction time to 90 minutes. All the title compounds except compound 5 are predicted to be safe by Osiris online software and are likely to have good oral bioavailability as they obey Lipinski’s rule of five for drug likeness

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    Get PDF
    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models

    Chronic cold stress-induced alterations in brush border membrane composition and enzyme activities in rat intestine

    No full text
    180-185The effect of chronic cold stress on the composition and function of rat intestinal brush border membrane (BBM) was studied. Various lipid fractions from intestinal BBM viz. cholesterol (p<0.01), phospholipids (p<0.01), triglycerides (p<0.05) and gangliosides (p<0.05) were significantly reduced in cold stressed animals, as compared to controls. Analysis of membrane saccharide content revealed a significant increase in sialic acid (25%) and hexosamine (36%) contents and a re-duction in fucose (19%) content in cold stressed rats. Determination of various enzyme activities in BBM showed signifi-cantly enhanced activities of alkaline phosphatase (p<0.01), lactase (p<0.001) and leucine aminopeptidase (p<0.001), whereas sucrase activity was reduced (p<0.05) under these conditions. The magnitude and site of these alterations across the crypt-villus axis varied from enzyme to enzyme. These findings suggest that chronic cold stress results in profound altera-tions in intestinal BBM. Altered structure and function of intestinal BBM may play a role in stress-induced derangements in gastrointestinal tract

    Pharmacophore Modeling and Molecular Docking Studies on Pinus roxburghii as a Target for Diabetes Mellitus

    Get PDF
    The present study attempts to establish a relationship between ethnopharmacological claims and bioactive constituents present in Pinus roxburghii against all possible targets for diabetes through molecular docking and to develop a pharmacophore model for the active target. The process of molecular docking involves study of different bonding modes of one ligand with active cavities of target receptors protein tyrosine phosphatase 1-beta (PTP-1β), dipeptidyl peptidase-IV (DPP-IV), aldose reductase (AR), and insulin receptor (IR) with help of docking software Molegro virtual docker (MVD). From the results of docking score values on different receptors for antidiabetic activity, it is observed that constituents, namely, secoisoresinol, pinoresinol, and cedeodarin, showed the best docking results on almost all the receptors, while the most significant results were observed on AR. Then, LigandScout was applied to develop a pharmacophore model for active target. LigandScout revealed that 2 hydrogen bond donors pointing towards Tyr 48 and His 110 are a major requirement of the pharmacophore generated. In our molecular docking studies, the active constituent, secoisoresinol, has also shown hydrogen bonding with His 110 residue which is a part of the pharmacophore. The docking results have given better insights into the development of better aldose reductase inhibitor so as to treat diabetes related secondary complications
    corecore