3,536 research outputs found
Superfluid and Fermi liquid phases of Bose-Fermi mixtures in optical lattices
We describe interacting mixtures of ultracold bosonic and fermionic atoms in
harmonically confined optical lattices. For a suitable choice of parameters we
study the emergence of superfluid and Fermi liquid (non-insulating) regions out
of Bose-Mott and Fermi-band insulators, due to finite Boson and Fermion
hopping. We obtain the shell structure for the system and show that angular
momentum can be transferred to the non-insulating regions from
Laguerre-Gaussian beams, which combined with Bragg spectroscopy can reveal all
superfluid and Fermi liquid shells.Comment: 4 pages, 2 figure
Evaluation of fungal and bacterial antagonists' seed treatment for controlling damping-off disease in forest nurseries
Biological control potential of six well reported biocontrol agents, Trichomerma viride, T. harzianum,
Gliocladium virens, Bacillus sp., B. subtilis and Pseudomonas fluorescens against Rhizoctonia solani,
R. bataticola, Fusarium oxysporum, F. moniliformae, F. solani and Phythium aphanidermatum causing damping-off in forest nurseries was studied in vitro and under screen house conditions. In vitro evaluation of biocontrol agents by dual inoculation method revealed that P. fluorescens, Bacillus sp. and T. viride significantly inhibited mycelial growth of the damping-offfungi. In pot experiments, seed treatment of T. viride and P. fluorescens proved superior to other fungal and bacterial biocontrol agents in reducing damping off (pre and post emergence) incidence compared to untreated controls
Superfluid and Mott Insulating shells of bosons in harmonically confined optical lattices
Weakly interacting atomic or molecular bosons in quantum degenerate regime
and trapped in harmonically confined optical lattices, exhibit a wedding cake
structure consisting of insulating (Mott) shells. It is shown that superfluid
regions emerge between Mott shells as a result of fluctuations due to finite
hopping. It is found that the order parameter equation in the superfluid
regions is not of the Gross-Pitaeviskii type except near the insulator to
superfluid boundaries. The excitation spectra in the Mott and superfluid
regions are obtained, and it is shown that the superfluid shells posses low
energy sound modes with spatially dependent sound velocity described by a local
index of refraction directly related to the local superfluid density. Lastly,
the Berezinskii-Kosterlitz-Thouless transition and vortex-antivortex pairs are
discussed in thin (wide) superfluid shells (rings) limited by three (two)
dimensional Mott regions.Comment: 11 pages, 9 figures
Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach
Recently it has been demonstrated, considering Ni and Ca isotopes as
prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach
wherein the single particle continuum corresponding to the RMF is replaced by a
set of discrete positive energy states for the calculation of pairing energy
provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB)
description of the ground state properties of the drip-line neutron rich
nuclei. The applicability of RMF+BCS is essentially due to the fact that the
main contribution to the pairing correlations is provided by the low-lying
resonant states. General validity of this approach is demonstrated by the
detailed calculations for the ground state properties of the chains of isotopes
of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have
been used for the effective mean-field Lagrangian. Comprehensive results for
the two neutron separation energy, rms radii, single particle pairing gaps and
pairing energies etc. are presented. The Ca isotopes are found to exhibit
distinct features near the neutron drip line whereby it is found that further
addition of neutrons causes a rapid increase in the neutron rms radius with
almost no increase in the binding energy, indicating the occurrence of halos. A
comparison of these results with the available experimental data and with the
recent continuum relativistic Hartree-Bogoliubov (RCHB) calculations amply
demonstrates the validity and usefulness of this fast RMF+BCS approach.Comment: 59 pages, 40 figure
Radio-frequency chain selection for energy and spectral efficiency maximization in hybrid beamforming under hardware imperfections
The next-generation wireless communications require reduced energy consumption, increased data rates and better signal coverage. The millimetre-wave frequency spectrum above 30 GHz can help fulfil the performance requirements of the next-generation mobile broadband systems. Multiple-input multiple-output technology can provide performance gains to help mitigate the increased path loss experienced at millimetre-wave frequencies compared with microwave bands. Emerging hybrid beamforming architectures can reduce the energy consumption and hardware complexity with the use of fewer radio-frequency (RF) chains. Energy efficiency is identified as a key fifth-generation metric and will have a major impact on the hybrid beamforming system design. In terms of transceiver power consumption, deactivating parts of the beamformer structure to reduce power typically leads to significant loss of spectral efficiency. Our aim is to achieve the highest energy efficiency for the millimetre-wave communications system while mitigating the resulting loss in spectral efficiency. To achieve this, we propose an optimal selection framework which activates specific RF chains that amplify the digitally beamformed signals with the analogue beamforming network. Practical precoding is considered by including the effects of user interference, noise and hardware impairments in the system modelling
Digestibility of extruded peas, extruded lupin, and rapeseed meal in rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima)
Apparent digestibility coefficients (ADC) of nutrients and energy of extruded peas, extruded lupin and rapeseed meals were determined in juvenile rainbow trout and turbot. Extruded lupin was found to be a promising substitute for fish meal in the diets of trout and turbot, with an acceptable digestibility of its dry matter (70% in trout and 81% in turbot) and a high digestibility of its protein (96% in trout and 98% in turbot) and its energy (77% in trout and 85% in turbot). Extruded peas had a lower digestibility of its protein in trout (88%) than in turbot (92%), and the ADC of energy, mainly supplied as starch, was relatively low (69% in trout and 78% in turbot). The digestibility of rapeseed meal was improved by a thermal treatment. Without thermal treatment, rapeseed meal had a low digestibility of its dry matter (57%) and energy (69%) in turbot. The availability of phosphorus was higher for extruded lupin (62% in trout and 100% in turbot) compared to the other plant-ingredients. When compared to a solvent-extracted meal, the availability of phosphorus from rapeseed meal was improved by heat treatment in both species (42% vs. 26% in trout and 65% vs. 49% in turbot). (C) 2000 Elsevier Science B.V
Dynamic RF Chain Selection for Energy Efficient and Low Complexity Hybrid Beamforming in Millimeter Wave MIMO Systems
This paper proposes a novel architecture with a framework that dynamically activates the optimal number of radio frequency (RF) chains used to implement hybrid beamforming in a millimeter wave (mmWave) multiple-input and multiple-output (MIMO) system. We use fractional programming to solve an energy efficiency maximization problem and exploit the Dinkelbach method (DM)-based framework to optimize the number of active RF chains and data streams. This solution is updated dynamically based on the current channel conditions, where the analog/digital (A/D) hybrid precoder and combiner matrices at the transmitter and the receiver, respectively, are designed using a codebook-based fast approximation solution called gradient pursuit (GP). The GP algorithm shows less run time and complexity while compared to the state-of-the-art orthogonal matching pursuit (OMP) solution. The energy and spectral efficiency performance of the proposed framework is compared with the existing state-of-the-art solutions, such as the brute force (BF), the digital beamformer, and the analog beamformer. The codebook-free approaches to design the precoders and combiners, such as alternating direction method of multipliers (ADMMs) and singular value decomposition (SVD)-based solution are also shown to be incorporated into the proposed framework to achieve better energy efficiency performance
- …